Control System Toolbox™ 9
User’s Guide

MATLAB

4\ MathWorks'

Accelerating the pace of engineering and science

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Control System Toolbox™ User’s Guide
© COPYRIGHT 2001-2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2001

July 2002

June 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 5.1 (Release 12.1)
Revised for Version 5.2 (Release 13)
Revised for Version 6.0 (Release 14)
Revised for Version 6.2 (Release 14SP2)
Revised for Version 6.2.1 (Release 14SP3)
Revised for Version 7.0 (Release 2006a)
Revised for Version 7.1 (Release 2006b)
Revised for Version 8.0 (Release 2007a)
Revised for Version 8.0.1 (Release 2007b)
Revised for Version 8.1 (Release 2008a)
Revised for Version 8.2 (Release 2008b)
Revised for Version 8.3 (Release 2009a)
Revised for Version 8.4 (Release 2009b)
Revised for Version 8.5 (Release 2010a)
Revised for Version 9.0 (Release 2010b)

LTI Models

1

Representing Linear Time-Invariant (LTI) Systems . ..
Supported Model Typescviieinnnnne...
Model Objects Represent Linear Systems
Using LTI Models ...,

Creating Transfer Functions
About Transfer Function Representations
Commands for Creating Transfer Functions
SISO Transfer Function Models
MIMO Transfer Function Models
Transfer Functions with Time Delays
Pure Gains e e

Creating State Space Models
About State-Space Models
Commands for Creating State-Space Models
Explicit State-Space Models
Descriptor (Implicit) State-Space Models
State-Space Models with Time Delays

Creating Frequency Response Data (FRD) Models
About FRD Models,
Commands for Creating FRD Models
Examples of Creating FRD Models
Importing Data Intoan FRD Model

PID Controller Models

LTI Propertiescciiiiiiiiieiinnnnnnnnnn.
What are LTI Properties?cviiiiiinn..
Generic LTI Propertiesc.coiiiiiinnnneennnan.
Model-Specific Propertiescccviiueinne...
Setting LTI Properties,
Accessing Property Values Usingget

1-2
1-2
1-2
1-3

vi

Contents

Direct Property Referencing Using Dot Notation 1-31

Additional Insight into LTI Properties 1-33
Time Delays 1-39
Supported Typesof Delayscvii... 1-39
Available Properties for Modeling Delays 1-40
Input and Output Delays 1-40
Specifying I/0 Delays in MIMO Models 1-43
InternalDelayscci .. 1-45
Analyzing Systems With Delays 1-48
Eliminating Time Delays: Padé Approximation and Thiran
Filters ..o e e e 1-55
Sensitivity Analysis e 1-60
Specifying Delays in Discrete-Time Models 1-62
Discretization i 1-67
Functions That Support Internal Time Delays 1-70
Functions That Do Not Support Internal Time Delays ... 1-70
Inside Time Delay Models 1-71
Model Conversionciiiiiiinnnnnnn.. 1-73
Available Model Formats 1-73
Explicit Conversioncciuiiiiiinnnnnnnen.. 1-73
Automatic Conversiono.oueeeeeennnnnnnen.. 1-74
Caution About Model Conversions 1-75
Simulink Block for LTI Systems 1-76
References 1-78

Operations on LTI Models

2

OVerVIieW ..ttt e e e 2-2
Precedence and Property Inheritance 2-3
Viewing LTI Systems as Matrices 2-5

Data Retrieval i

Extracting and Modifying Subsystems
What is a Subsystem?
Basic Subsystem Conceptscoiiiiieeieeen...
Referencing FRD Models Through Frequencies
Referencing Channels by Name
Resizing LTI Systems,

Arithmetic Operations on LTI Models
Supported Arithmetic Operations
Addition and Subtraction,
Multiplication0ttt
Inversion and Related Operations
TransposSitiOn vttt e e e e e i i
Pertransposition i

Model Interconnection Functions
Supported Interconnection Functions
Concatenation of LTI Models
Feedback and Other Interconnection Functions

Converting Between Continuous- and Discrete-Time
Representations,
Supported Conversion Functions and Methods
Zero-Order Hold Conversion Method
First-Order Hold Conversion Method
Impulse-Invariant Mapping
Tustin ApproxXimationoeeeeeeeeeeeennnnnnnns
Zero-Pole Matching Equivalents

Resampling of Discrete-Time Models
Available Commands for Resampling Discrete-Time

Models ... i
Example of Resampling a Discrete-Time Model

References i,

vii

Model Analysis Tools

3

General Model Characteristics 3-2
Model Dynamics0iiiiiiniiinninnnnnn.. 3-4
State-Space Realizations 3-7

4

Conceptofan LTI Array, 4-2
What is an LTI Array?c0iiiiiiiiiennnn... 4-2
Whento Usean LTTArraycccvviiiennne... 4-2
When to Collect a Set of Models in an LTI Array 4-3
Restrictions for LTI Models Collected in an Array 4-3
Where to Find Information on LTI Arrays 4-4
Visualizing LTT Arraysc.oiuiiiiniinennnn... 4-4
Higher Dimensional Arrays of LTI Models 4-6

Dimensions, Size, and Shape of an LTI Array 4-8
I/O and Array Dimensions of LTI Arrays 4-8
Accessing the Dimensions of an LTI Array Using size and

NAIMS .o e e 4-10
Using reshape to Rearrange an LTI Array 4-12

Building LTI Arrayscuiiieeinnninnnnnn.. 4-13
Ways to Build LTT Arraysccoviiiniinennnn... 4-13
Building LTI Arrays Using for Loops 4-13
Building LTI Arrays Using the stack Function 4-16
Building LTI Arrays Using tf, zpk, ss, and frd 4-18
Generating Random LTI Arrays Usingrss 4-21

Indexing into LTI Arrayscciiiuiinn... 4-22
When to Index into LTI Arrays, 4-22
Organization of Indices o iiuen... 4-22

viii Contents

Note on Indexing into LTI Arrays of FRD Models 4-23

Accessing Particular Models in an LTI Array 4-23
Extracting LTI Arrays of Subsystems 4-24
Reassigning Parts of an LTI Array 4-25
Deleting Parts of an LTI Array 4-26
Operationson LTI Arrays 4-27
Supported Operations on LTI Arrays 4-27
Example: Addition of Two LTI Arrays 4-28
Dimension Requirements 4-29
Special Cases for Operations on LTI Arrays 4-30
Other Operations on LTI Arraysccooo.. .. 4-32

Customization Preliminaries

Terminology 5-2

The Property and Preferences Hierarchy 5-3

Setting Toolbox Preferences

Toolbox Preferences Editor 6-2
Overview of the Toolbox Preferences Editor 6-2
Opening the Toolbox Preferences Editor 6-2

Units Pane i, 6-4

Style Pane i 6-5

Options Pane 6-6

SISO Tool Pane 000, 6-7

Setting Tool Preferences

7

Introduction 7-2
LTI Viewer Preferences Editor 7-3
Opening the LTI Viewer Preference Editor 7-3
UnitsPane i, 7-4
Style Pane 7-4
Options Panec. .. 7-5
Parameters Pane, 7-6
Graphical Tuning Window Preferences Editor 7-8
Opening the Graphical Tuning Window Preferences
Editor ... e e e 7-8
UnitsPane i, 7-9
Time Delays Pane, 7-10
Style Pane 7-11
Options Pane 7-13
Line Colors Pane, 7-14

Customizing Response Plot Properties

8

Introduction 8-2

Customizing Response Plots Using the Response Plots

Property Editor 8-3
Opening the Property Editor 8-3
Overview of Response Plots Property Editor 8-4
LabelsPane i, 8-6
Limits Pane i 8-6
UnitsPane i, 8-7
Style Pane 8-8
Options Pane 8-9
Editing Subplots Using the Property Editor 8-11
Customizing Response Plots Using Plot Tools 8-12

X Contents

Properties You Can Customize Using Plot Tools
Opening and Working with Plot Tools
Example of Changing Line Color Using Plot Tools

Customizing Response Plots from the Command
Line e e e
Overview of Customizing Plots from the Command Line ..
Obtaining Plot Handles
Obtaining Plot Options Handles
Examples of Customizing Plots from the Command Line ..
Properties and Values Reference
Property Organization Reference

Customizing Plots Inside the SISO Design Tool
Overview of Customizing SISO Design Tool Plots
Root Locus Property Editor
Open-Loop Bode Property Editor
Open-Loop Nichols Property Editor
Prefilter Bode Property Editor

Design Case Studies

9

Yaw Damper for a 747 Jet Transport
Overview of this Case Study
CreatingthedJet Model
Computing Open-Loop Eigenvalues
Open-Loop Analysis0,
Root Locus Designcciiiiiiiinnnn.
Washout Filter Design

Hard-Disk Read/Write Head Controller
Overview of this Case Study
Creating the Read/Write Head Model
Model Discretizationc.iiiiinnnnn..
Adding a Compensator Gain covuueeeee...
Adding a Lead Network
Design Analysiscciiiiiiin i

xi

xii

Contents

LQG Regulation: Rolling Mill Example 9-30

Overview of this Case Study 9-30
Process and Disturbance Models 9-30
LQG Design forthe x-Axis, 9-33
LQG Design forthe y-Axis u... 9-40
Cross-Coupling Between Axesccovviev... 9-42
MIMO LQG Designovuiiiiiieiiiieennnnn. 9-45
Kalman Filtering 9-49
Overview of this Case Study 9-49
Discrete Kalman Filter 9-50
Steady-State Design0t 9-51
Time-Varying Kalman Filter 9-57
Time-Varying Designcouiiiiiiinnnnn. 9-58
Referencesoiiiiiiiiiii i 9-62

10|

Scaling State-Space Models 10-2
Why Scaling Is Important 10-2
When to Scale Your Model 10-2
Manually Scaling Your Model 10-3

How To Get Accurate Results 10-8

11

Overview of the SISO DesignTool 11-2
Opening the SISO DesignTool 11-3
Using the SISO Design Task Node 11-4

The SISO Design Task Node 11-4

SISO Design Task Node Menu Bar 11-4

Using the SISO Design Task in the Controls &

Estimation Tools Manager 11-11
Architecture i 11-11
Compensator Editor 11-18
Graphical Tuningt 11-18
AnalysisPlots 11-22
Automated Tuning i, 11-23
SISO Design Task Graphical Tuning Window 11-41
Using the Graphical Tuning Window Menu Bar 11-43
Overview of the Graphical Tuning Window Menu Bar 11-43
File ... e 11-43
Edit ..o 11-46
VW e e 11-47
Analysis ... e 11-48
4100 = 11-49
Window ... e e 11-53
Help .o e e 11-53
Using the Graphical Tuning Window Toolbar 11-55

Using the Right-Click Menus in the Graphical Tuning

Window i e 11-56
Overview of the Right-Click Menus 11-56
Add Pole/Zero e 11-57
Delete Pole/Zero ..., 11-60
Edit Compensator, 11-61
Gain Target i, 11-61
ShOW . e e 11-61
Multimodel Display 11-62
Design Requirements, 11-62
Grid ..o e e 11-75
Full View e 11-75
Properties 11-76
Select Compensatorc.cuiiiimnnneneeennnn. 11-77
Status Pane 11-77

xiii

xiv

LTI Viewer for SISO Design Task Design

Requirements, 11-78
Overview of LTI Viewer Design Requirements 11-78
Available Design Requirements in the LTI Viewer 11-78
Example: Time Domain Requirement 11-79
LTI Viewer

Basic LTI Viewer Tasks 12-2
Using the Right-Click Menu in the LTI Viewer 12-4
Overview of the Right-Click Menu 12-4
Setting Characteristics of Response Plots 12-4
Adding Design Requirements 12-9

Importing, Exporting, and Deleting Models in the LTI

Viewer e 12-12
Importing Models i, 12-12
Exporting Models, 12-13
DeletingModels 12-14
Selecting Response Types, 12-16
Methods for Selecting Response Types 12-16
Right Click Menu: Plot Type 12-16
Plot Configurations Window 12-16
Line Styles Editor 12-18
Analyzing MIMO Models 12-20
Overview of Analyzing MIMO Models 12-20
Array Selector 12-21
/O Grouping for MIMO Models 12-23
Selecting /O Pairs ittt 12-24
Customizing the LTI Viewer 12-25
Overview of Customizing the LTI Viewer 12-25
LTI Viewer Preferences Editor 12-25

Contents

Index

XV

xvi Contents

LTI Models

® “Representing Linear Time-Invariant (LTI) Systems” on page 1-2
e “Creating Transfer Functions” on page 1-5

® “Creating State Space Models” on page 1-13

® “Creating Frequency Response Data (FRD) Models” on page 1-20
e “PID Controller Models” on page 1-23

e “LTI Properties” on page 1-24

¢ “Time Delays” on page 1-39

e “Model Conversion” on page 1-73

¢ “Simulink Block for LTI Systems” on page 1-76

e “References” on page 1-78

1-2

Representing Linear Time-Invariant (LTl) Systems

In this section...

“Supported Model Types” on page 1-2
“Model Objects Represent Linear Systems” on page 1-2
“Using LTI Models” on page 1-3

Supported Model Types

You can represent continuous- and discrete-time systems in Control System
Toolbox™ as:

¢ Transfer functions

® State-space models

® Frequency response data (FRD) models

® PID controller models

Your system can be single-input/single-output (SISO) or
multiple-input/multiple-output (MIMO).

Model Objects Represent Linear Systems

The Control System Toolbox software provides customized data structures,
known as LTI model objects, for each type of model: tf, zpk, ss, and frd.
These LTI model objects encapsulate the model data. They allow you to
manipulate LTI systems as single entities rather than collections of data
vectors or matrices.

Depending on the type of model you use, the data for your model can include:

¢ One or more numerator/denominator pairs for transfer functions

Matrices for state-space models

Zeros and poles for zero-pole-gain models

¢ Frequency and response vectors for FRD models

Representing Linear Time-Invariant (LTl) Systems

Note All LTI model objects are MATLAB® objects. See “MATLAB Classes”
in the MATLAB documentation if you are not familiar with objects and object
syntax.

LTI Properties and Methods

LTI model objects include predefined fields, known as object properties, which
store model data such as model parameters, sampling time, delays, and input
and output channel names (see “LTI Properties” on page 1-24).

The operations you can perform on a particular object are the object methods.
For information about creating LTI model objects, see:

e “Creating Transfer Functions” on page 1-5
e “Creating State Space Models” on page 1-13
e “Creating Frequency Response Data (FRD) Models” on page 1-20

To learn more about allowed operations on LTI model objects, see Chapter 2,
“Operations on LTI Models”.

Using LTI Models

After you represent your LTI model, you manipulate the model using
arithmetic and model interconnection operations (see Chapter 2, “Operations
on LTI Models”). You also can analyze the model response using commands
such as bode and step (see Chapter 3, “Model Analysis Tools”).

Analysis of frd models is restricted to frequency-domain methods.
You can design compensators for systems specified as tf, zpk, ss, and frd
models. Available compensator design techniques include root locus analysis,

pole placement, LQG optimal control, and frequency domain loop-shaping.

For frd models, you can:

LTI Models

e Use frequency-domain design techniques to design a controller for the
frd model.

e Identify a tf, zpk, or ss model using “System Identification Toolbox™” and
design a controller for the identified model.

Creating Transfer Functions

Creating Transfer Functions

In this section...

“About Transfer Function Representations” on page 1-5
“Commands for Creating Transfer Functions” on page 1-5
“SISO Transfer Function Models” on page 1-6

“MIMO Transfer Function Models” on page 1-10
“Transfer Functions with Time Delays” on page 1-11

“Pure Gains” on page 1-12

About Transfer Function Representations

With Control System Toolbox software, you can represent linear systems as
transfer functions in polynomial or factorized (zero-pole-gain) form. All tf
model objects represent transfer functions in polynomial form. The zpk model
objects represent transfer functions in factorized form.

Control System Toolbox software supports transfer functions that are
continuous-time or discrete-time, and SISO or MIMO. You can also have time
delays in your transfer function representation.

Commands for Creating Transfer Functions

Use the commands described in the following table to create transfer
functions.

Command Description

tf Create tf objects representing transfer functions
in polynomial form.

zpk Create zpk objects representing transfer functions
in zero-pole-gain (factorized) form.

filt Create tf objects representing discrete-time
transfer functions using digital signal processing
(DSP) convention.

LTI Models

For examples of using these commands, see:

e “SISO Transfer Function Models” on page 1-6
e “MIMO Transfer Function Models” on page 1-10
¢ “Transfer Functions with Time Delays” on page 1-11

¢ “Pure Gains” on page 1-12

SISO Transfer Function Models
¢ “Continuous-Time SISO Transfer Functions in Polynomial Form” on page
1-6

e “Continuous-Time SISO Transfer Functions in Zero-Pole-Gain Form” on
page 1-7

® “Discrete-Time SISO Transfer Functions” on page 1-8

¢ “Discrete Transfer Functions in DSP Form” on page 1-9

Continuous-Time SISO Transfer Functions in Polynomial Form
A continuous-time SISO transfer function in polynomial form is given by:

N (s)

)

where s is the Laplace variable, N(s) is the numerator polynomial, and D(s) is
the denominator polynomial.

Create a SISO transfer function model in polynomial form using:
G = tf(num,den)

where num and den are row vectors of coefficients of the polynomials N(s)
and D(s), respectively. These row vectors are ordered in descending powers
of s. G is a tf model object.

For example, create the transfer function G(s) = s/(s®> + 2s + 1), using:

G = tf([1 O],[1 2 1]);

Creating Transfer Functions

Alternatively, you can specify the same tf model as a rational expression in
the Laplace variable s:

]
G

tf('s'); % Define the Laplace variable s
s/(s"2 + 2*s + 1); % Specify rational expression in s

After you define the variable s, you can create multiple tf models by
specifying additional rational expressions of s.

For more examples, see the tf reference page.

Continuous-Time SISO Transfer Functions in Zero-Pole-Gain
Form

A continuous-time SISO transfer function in factorized (zero-pole-gain) form
is given by:

where:

® L is a real- or complex-valued scalar gain.

® 2z ,.., 2, are the real or complex conjugate pairs of zeros of the transfer
function G(s) — roots of the numerator polynomial N(s).

® p,,..., p, are the real or complex conjugate pairs of poles of the transfer
function G(s) — roots of the denominator polynomial D(s).

Create transfer functions in factorized (zpk) form using:

G = zpk(z, p, k)

where z, p, and k are row vectors of zeroes z, ,..., 2,,, poles p, ..., p,, and gain k£
respectively.

For example, the transfer function G(s) = s/(s? + 2s + 1) in factorized form
is given by:

1-7

LTI Models

This transfer function has a zero at s = 0, two poles at s = -1, and a gain of 1.
Create a zpk model of this transfer function using:
G = zpk([O0],[-1 -1],[1]1);

Alternatively, you can specify the same zpk model as a rational expression in
the Laplace variable s:

]
G

zpk('s'); % Define the Laplace variable s
s/ (s+1)"2; % Specify the rational expression

After you define the variable s, you can create multiple zpk models by
specifying additional rational expressions of s.

For more examples, see the zpk reference page.

Discrete-Time SISO Transfer Functions

In discrete time, a transfer function can be expressed as a ratio of polynomials
in the discrete-time variable z:

Create a discrete-time SISO transfer function using the tf or zpk commands
with an argument that specifies the sampling time.

For example, create the discrete-time transfer function G(z) = z/(z? — 2z — 6)
with a sampling time of 0.1 s, using:

G = tf([1 0O],[1 -2 -6],0.1)
G is a tf model object with a sampling time of 0.1 s.

To create a discrete zpk model with a 0.1-second sampling time:

Creating Transfer Functions

z

O sy

use the following command.:

G = zpk([0],[-2, 3],[1],0.1);

Alternatively, you can specify a discrete-time tf or zpk model as a rational
expression in z by defining the variable z with the desired sampling time.
For example:

z
G

tf('z',0.1); % Define the variable z and sampling time
z/(z*2 - 2*z - 6); % Specify the rational expression

For more examples of creating discrete-time transfer functions in polynomial
and factorized form, see the tf and zpk reference pages.

Discrete Transfer Functions in DSP Form

The control and digital signal processing (DSP) domains use different
conventions to specify discrete-time transfer functions.

Typically, control engineers express transfer functions using the z variable,
and order the numerator and denominator terms in descending powers of
z. For example:

2
27 +4
G(z)=—5——
z2°+2z+5

The syntax for creating transfer functions using tf assumes the control
engineering convention. However, DSP engineers often write this transfer
function as:
-2
o - 1+4
G =——
1+2z7" +52z

where the numerator and denominator are expressions in z!, ordered in
ascending powers of z71.

1-9

LTI Models

1-10

You can use filt to create a transfer function using the DSP convention. For
example, create the transfer function G'(z™!) using:

Gdsp = filt([1 O 4], [1 2 5], 0.1); % 0.1 s sampling time

Gdsp is a discrete-time tf model object. For additional examples, see the
filt reference page.

Alternatively, you can use tf to create transfer functions in DSP form by
setting the 'Variable' property to 'z*-1"':

G = tf([1 0 4], [125], 0.1, 'Variable', 'z*-1');

For more information about setting model properties, see “LTI Properties” on
page 1-24 and the tf reference page.

MIMO Transfer Function Models

A MIMO transfer function is a matrix of SISO transfer functions that define
the response for each input-output channel of a MIMO system.

Create MIMO transfer function models using one of the following approaches:

® Concatenate SISO tf or zpk models.

® Use tf or zpk commands with cell array arguments.
For example, to create the two-input, one-output MIMO transfer function

s—1
s+1
G(S): s+2

s +4s+5

you can specify the SISO transfer functions for each channel and concatenate
these transfer functions:

gt tf([1 -11,[1 1]); % first input to output
g21 tf([1 2],[1 4 5]); % second input to output
G = [g11; g21];

Creating Transfer Functions

See “Model Interconnection Functions” on page 2-20 for more information
about concatenating linear systems.

You can also define MIMO transfer functions directly using tf. For a general
MIMO transfer matrix G(s), the cell array entries N{i,j} and D{i,j} are
row-vector representations of the numerator and denominator of Gij(s), the
ijth entry of the transfer matrix G(s).

For example, to create the previous two-input, one-output MIMO system G(s):

N = {[1 -1];[1 2]};
D = {[1 1];[1 4 5]};
H = tf(N,D);

You can also use zpk to create MIMO zero-pole-gain transfer functions. To
specify MIMO transfer functions in DSP form as expressions in 2!, use filt.
For more examples of creating MIMO transfer functions, see the tf, zpk, and
filt reference pages.

Transfer Functions with Time Delays

You can represent transfer functions with time delays by specifying the delay
on each input-output channel of the system.

To create a transfer function with a time delay, specify the 'ioDelay' property
of the tf or zpk model object. For SISO transfer functions, set 'ioDelay' to a
scalar value representing the time delay in seconds. For example:

G = tf([1 1], [1 5 3]);
G.ioDelay = 2;

For MIMO transfer functions, specify the 'ioDelay' property as an array of
time delays corresponding to each input-output channel. For example:

s = tf('s");

sys = [2/s (s+1)/(s+10); 10 (s-1)/(s+5)];

tau = [0.1 0.3; 0 0.2]; % Create I/O delay matrix.
sys.ioDelay = tau; % Add I/0 delays to sys.

The resulting transfer function is:

LTI Models

1-12

Transfer function from input 1 to output...
2

#1: exp(-0.1*s) * -
s

#2: 10

Transfer function from input 2 to output...

s + 1
#1: exp(-0.3*s) * ------
s + 10
s - 1
#2: exp(-0.2*s) * -----
s +5

For more information about setting model properties, see “LLTI Properties”
on page 1-24 and the tf and zpk reference pages.

Alternatively, you can define the variable s or z and enter the time delay as
an exponential term in an algebraic expression in s or z. For example:

]
G

tf('s');
exp(-2*s)*(s+1)/(s"2 + 5*s + 3);

For more information about working with models that have time delays, see
“Time Delays” on page 1-39.

Pure Gains

You can use tf to specify simple gains or gain matrices as tf model objects.
For example, create a two-input, two-output gain matrix using:

G = tf([1 0;2 1]);

Creating State Space Models

Creating State Space Models

In this section...
“About State-Space Models” on page 1-13

“Commands for Creating State-Space Models” on page 1-13
“Explicit State-Space Models” on page 1-14
“Descriptor (Implicit) State-Space Models” on page 1-17

“State-Space Models with Time Delays” on page 1-18

About State-Space Models

State-space models rely on linear differential equations or difference
equations to describe system dynamics. State-space models can result from:

® Linearizing a set of ordinary differential equations that represent a
physical model of the system.

® State-space model identification using “System Identification Toolbox”.

e State-space realization of the system transfer function. (See “Model

Conversion” on page 1-73 for more information.)

Control System Toolbox software supports state-space models in
continuous-time or discrete-time, SISO or MIMO, and these models can
include time delays. You can represent state-space models in either explicit
or descriptor (implicit) form.

Commands for Creating State-Space Models
Use the commands described in the following table to create state-space

models.
Command Description
Ss Create explicit state-space model.
dss Create descriptor (implicit) state-space model.

1-13

1 171 Models

Command Description
rss Generate random continuous state-space model.
drss Generate random discrete state-space model.

For examples of creating state-space models, see:

e “Explicit State-Space Models” on page 1-14
® “Descriptor (Implicit) State-Space Models” on page 1-17
® “State-Space Models with Time Delays” on page 1-18

Explicit State-Space Models

e “Explicit State-Space Models in Continuous Time” on page 1-14
e “Explicit State-Space Models in Discrete Time” on page 1-16

Explicit State-Space Models in Continuous Time
Continuous-time explicit state-space models have the following form:

@=Ax+Bu
dt
y=Cx+ Du

where x is the state vector. u and y are the input and output vectors. A, B, C,
and D are the state-space matrices.

Create explicit state-space models using:
sys = ss(A,B,C,D);

The output is an ss object sys that stores the state-space matrices A, B, C,
and D.

For example, consider the following simple model of an electric motor:

1-14

Creating State Space Models

2
ELQ+2§Q+59:3L
dt? t

where 0 is the angular displacement of the rotor and I is the driving current.
The following state-space equations describe the relationship between the
input u = I and the angular velocity y = d6/dt:

%zAx+Bu
dt

y=Cx+ Du

where

0
x = ﬁ
dt

and the state-space matrices are:

A:[O 1] B:m c=[0 1] D=[0]

-5 -2 3

To create this model in Control System Toolbox software, use:
sys = ss([0 1;-5 -2],[0;3],[0 1],0,

‘StateName', {'displacement', 'velocity'},
"InputName', 'I', 'OutputName', 'velocity')

The resulting ss model displays as:

a:
displacement velocity
displacement 0 1
velocity -5 -2
b:
I

displacement O

1-15

LTI Models

1-16

velocity 3
C:
displacement velocity
velocity 0 1
d:
I
velocity O

Continuous-time model.

The display of state-space models includes state names, input names, and
output names that you can optionally specify. When you leave the names
unspecified, the display includes the default names (for example, x1, ul, and
y1). See “LTI Properties” on page 1-24 for more information on how to specify
state, input, or output names.

Explicit State-Space Models in Discrete Time
A discrete-time explicit state-space model takes the following form:

x[n+1] = Ax[n]+ Bu|[n]
y[n]=Cx[n]+ Du[n]

where the vectors x[n], u[n], and y[n] are the state, input, and output vectors
for the nth sample.

Create a discrete-time explicit state-space model using the ss command with
an argument that specifies the sampling time.

For example, to create a state-space model with a sampling time of 0.25 s and
the following state-space matrices:

A=[0 1] B=m c=[0 1 D=[0]

-5 -2 3

use:

Creating State Space Models

sys = ss([0 1;-5 -2],[0;3],[0 1],0, 0.25);

Descriptor (Implicit) State-Space Models

A descriptor state-space model is a generalized form of state-space model. In
continuous time, a descriptor state-space model takes the following form:

Ex=Ax+Bu
y=Cx+ Du

where x is the state vector and u and y are the input and output vectors. A, B,
C, D, and E are the state-space matrices.

For example, consider the following simple dynamic model of a rotating body
(no restoring force):

J po-T
dt

y=0

where o/ is the inertia matrix, the input u = T is the driving torque, and F'is
the force matrix. The output y = w is the vector of angular velocities of the
rotating body.

To represent this system as an explicit state-space model, you can multiply
the first equation by !, the inverse of the inertia matrix. If the inertia
matrix ¢/ is not conditioned well for inversion, however, computing /! can
be impractical or impossible. In that case, you can specify this system as a
descriptor model with A=-F,B=1,C=1,D=0, and E = .

Create descriptor systems using:
sys = dss(A,B,C,D,E);
Sys i1s a continuous-time sS object with matrices A, B, C, D, and E.

For example, to create the descriptor state-space model of the rotating body,
use:

sys = dss(-F,eye(3),eye(3),0,J);

1-17

1 171 Models

This representation assumes three axes of rotation.

To create a discrete-time descriptor state-space model, use:
sysd = dss(A,B,C,D,E,Ts);

where Ts specifies the sampling time.

You can assign names to the states, inputs, and outputs of a descriptor
state-space model. See “L'TI Properties” on page 1-24 for more information.

State-Space Models with Time Delays

Both explicit and descriptor state-space models can include three types of
time delays, stored as the following properties of the ss object:

e InputDelay — Delays at model inputs.
® OQuputDelay — Delays at model outputs.

® InternalDelay — Internal delays resulting from combining models with
delays or closing feedback loops.

To create a state-space model with a time delay, set the value of the
corresponding delay property of the ss object. For example, create a
state-space model with a 1.2-s time delay at the input:

sys = ss([0 1;-5 -2],[0;3],[0 1],0, " 'InputDelay',1.2);

The value of either the 'InputDelay' or 'OutputDelay' property is a vector
whose length equals the number of inputs or outputs in the model.

You can interconnect state-space models or include a state-space model in a
feedback loop. When you do so, the Control System Toolbox software can
convert input or output delays to internal delays. Because ss objects can track
such internal delays, state-space representation is best suited for modeling
and analyzing delay effects in control systems. See “Internal Delays” on page
1-45 for more information.

1-18

Creating State Space Models

For more information about creating and working with state-space models
with time delays generally, see “Time Delays” on page 1-39.

1-19

1-20

Creating Frequency Response Data (FRD) Models

In this section...
“About FRD Models” on page 1-20
“Commands for Creating FRD Models” on page 1-21

“Examples of Creating FRD Models” on page 1-21
“Importing Data Into an FRD Model” on page 1-22

About FRD Models

In the Control System Toolbox software, you can use frd models to store,
manipulate, and analyze frequency response data. An frd model stores a
vector of frequency points with the corresponding complex frequency response
data you obtain either through simulations or experimentally.

For example, suppose you measure frequency response data for the SISO
system you want to model. You can measure such data by driving the system
with a sine wave at a set of frequencies ®,, @,, ,...,®,, as illustrated:

Giw) =

sinw;t — - ¥; (1)

At steady state, the measured response y,(?) to the driving signal at each
frequency w, takes the following form:

y;(t)=asin(w;t+b), i=1,...,n.

The measurement yields the complex frequency response G at each input
frequency:

Creating Frequency Response Data (FRD) Models

G(w;)= ae’®, i=1,..,n.

You can do most frequency-domain analysis tasks on frd models, but you
cannot perform time-domain simulations with them. For information on
frequency response analysis of linear systems, see Chapter 8 of [1].

Commands for Creating FRD Models

Use the following commands to create FRD models.

Command Description
frd Create frd objects from frequency response data.
frestimate Create frd objects by estimating the frequency

response of a Simulink® model. Requires Simulink®
Control Design™ — see “Frequency Response
Estimation” in the Simulink Control Design User’s
Guide for more information.

Examples of Creating FRD Models

Create continuous-time frd models from frequency response data using the
frd command:

sys = frd(response,frequencies,unit);
where, for SISO frd models:

® frequencies is a real vector of length Nf.

® response is a vector of length Nf of complex frequency response values for
each value in frequencies.

® unit is an optional string for the unit of frequency: either 'rad/s'(default)

or 'Hz'

To create a continuous-time MIMO frd model, use the same syntax and
inputs. However, change response to be a multidimensional array whose
dimensions depend upon the number of inputs and outputs and the length of

1-21

LTI Models

1-22

frequencies. For example, to represent a two-input, one-output system with
50 frequency response data points, response is a 1 x 2 x 50 array.

To create a discrete-time SISO or MIMO frd model, specify the sampling time:

sysd = frd(response,frequencies,unit,Ts);
% TS sampling time in seconds

Importing Data Into an FRD Model

You can create a frd model using measured data from your plant by importing
the data from a data file into the MATLAB workspace. For example, the file
LTIexamples.mat contains a frequency vector freq, and a corresponding
complex frequency response data vector respG. To load this frequency-domain
data and construct a frd model, type

load LTIexamples
sys = frd(respG, freq);

For more information about creating and manipulating frd models, see the
frd reference page.

PID Controller Models

PID Controller Models

PID (proportional-integral-derivative) control is a common control design
approach. You can represent PID controllers as either of two types of LTI
model objects: pid or pidstd. See the pid and pidstd reference pages for
more information.

1-23

LTI Models

1-24

LTI Properties

In this section...

“What are LTI Properties?” on page 1-24

“Generic LTI Properties” on page 1-24

“Model-Specific Properties” on page 1-26

“Setting LTI Properties” on page 1-28

“Accessing Property Values Using get” on page 1-30

“Direct Property Referencing Using Dot Notation” on page 1-31

“Additional Insight into LTI Properties” on page 1-33

What are LTI Properties?

The previous section shows how to create LTI objects that encapsulate the
model data and sample time. You also have the option to attribute additional
information, such as the input names or notes on the model history, to LTI
objects. This section gives a complete overview of the LTI properties, i.e., the
various pieces of information that can be attached to the TF, ZPK, SS, and
FRD objects. For online help on available LTI properties, enter the command:

help ltiprops

From a data structure standpoint, the LTI properties are the various fields
in the TF, ZPK, SS, and FRD objects. These fields have names (the property
names) and are assigned values (the property values). We distinguish between
generic properties, common to all four types of LTI objects, and model-specific
properties that pertain only to one particular type of model.

Generic LTI Properties

The generic properties are those shared by all four types of LTI models (TF,
ZPK, SS, and FRD objects). They are listed in the table below.

LTI Properties

LTI Properties Common to All LTI Objects

Property Name | Description Data Type
InputDelay Input delay(s) Vector

InputGroup Input channel groups Structure
InputName Input channel names Cell vector of strings
Notes Notes on the model history | Text

OutputDelay Output delay(s) Vector

OutputGroup Output channel groups Structure
OutputName Output channel names Cell vector of strings
Ts Sample time Scalar

Userdata Additional data Arbitrary

The sample time property Ts keeps track of the sample time (in seconds)

of discrete-time systems. By convention, Ts is 0 (zero) for continuous-time
systems, and Ts is -1 for discrete-time systems with unspecified sample time.
Ts is always a scalar, even for MIMO systems.

The InputDelay, OutputDelay, ioDelay and InternalDelay properties
allow you to specify time delays in the input or output channels, or for each
input/output pair. Their default value is zero (no delay). See “Time Delays” on
page 1-39 for details on modeling delays.

The InputName and OutputName properties enable you to give names to the
individual input and output channels. The value of each of these properties is
a cell vector of strings with as many cells as inputs or outputs. For example,
the OutputName property is set to

{ 'temperature' ; 'pressure' }

for a system with two outputs labeled temperature and pressure. The
default value is a cell of empty strings.

Using the InputGroup and OutputGroup properties of LTI objects, you can
create different groups of input or output channels, and assign names to the

1-25

1 171 Models

groups. For example, you may want to designate the first four inputs of a
five-input model as controls, and the last input as noise. See “Input Groups
and Output Groups” on page 1-36 for more information.

Finally, Notes and Userdata are available to store additional information on
the model. The Notes property is dedicated to any text you want to supply
with your model, while the Userdata property can accommodate arbitrary
user-supplied data. They are both empty by default.

For more detailed information on how to use LTI properties, see “Additional
Insight into LTI Properties” on page 1-33.

Model-Specific Properties

The remaining LTI properties are specific to one of the four model types
(TF, ZPK, SS, or FRD). For single LTI models, these are summarized in the
following four tables. The property values differ for LTI arrays. See set for
more information on these values.

TF-Specific Properties

Property

Name Description Data Type

den Denominator(s) Real cell array of row
vectors

num Numerator(s) Real cell array of row
vectors

ioDelay 1/0 delay(s) Matrix

Variable Transfer function variable | String 's', 'p', 'z', 'q',
or 'z"-1"'

1-26

LTI Properties

ZPK-Specific Properties

Property

Name Description Data Type

z Zeros Cell array of column vectors

p Poles Cell array of column vectors

k Gains Two-dimensional real matrix

Variable Transfer function String 's', 'p', 'z', 'q', or
variable 'z~ -1

ioDelay 1/0 delay(s) Matrix

$S-Specific Properties
Property Name | Description Data Type

a State matrix A 2-D real matrix

b Input-to-state matrix B 2-D real matrix

c State-to-output matrix C 2-D real matrix

d Feedthrough matrix D 2-D real matrix

e Descriptor E matrix 2-D real matrix
InternalDelay Internal delay(s) Vector

StateName State names Cell vector of strings
Scaled When false, numerical 0 for false, 1 for true

algorithms rescale the
state vector to improve
accuracy.

When true, the model is
marked as already scaled
and no rescaling occurs.

1-27

LTI Models

1-28

FRD-Specific Properties

Property Name Description Data Type
Frequency Frequency data points Real-valued vector
ResponseData Frequency response Complex-valued

multidimensional array

Units Units for frequency String 'rad/s’ or 'Hz’

Most of these properties are dedicated to storing the model data. Note that
the E matrix is set to [] (the empty matrix) for standard state-space models,
a storage-efficient shorthand for the true value E = I.

The Variable property is only an attribute of TF and ZPK objects. This
property defines the frequency variable of transfer functions. The default
values are 's' (Laplace variable s) in continuous time and 'z' (Z-transform
variable z) in discrete time. Alternative choices include 'p' (equivalent to s),
'q' (equivalent to z), and 'z~ -1"' for the reciprocal of the z variable. The
influence of the variable choice is mostly limited to the display of TF or ZPK
models. One exception is the specification of discrete-time transfer functions
with tf (see tf for details).

Note that tf produces the same result as filt when the Variable property
is set to 'z*-1".

Finally, the StateName property is analogous to the InputName and
OutputName properties and keeps track of the state names in state-space
models.

Setting LTI Properties
There are three ways to specify LTI property values:

® You can set properties when creating LTI models with tf, zpk, ss, or frd.
® You can set or modify the properties of an existing LTI model with set.
® You can also set property values using structure-like assignments.

This section discusses the first two options. See “Direct Property Referencing
Using Dot Notation” on page 1-31 for details on the third option.

LTI Properties

The function set for LTI objects follows the same syntax as its Handle
Graphics counterpart. Specifically, each property is updated by a pair of
arguments

PropertyName ,PropertyValue
where

® PropertyName is a string specifying the property name. You can type
the property name without regard for the case (upper or lower) of the
letters in the name. Actually, you need only type any abbreviation of the
property name that uniquely identifies the property. For example, 'user'
is sufficient to refer to the Userdata property.

® PropertyValue is the value to assign to the property (see set for details on
admissible property values).

As an illustration, consider the following simple SISO model for a heating
system with an input delay of 0.3 seconds, an input called "energy," and an
output called "temperature.”

ENEryy o035 1 tempe mture

- 5+1 ot

deloy

A Simple Heater Model

You can use a TF object to represent this delay system, and specify the time
delay, the input and output names, and the model history by setting the
corresponding LTI properties. You can either set these properties directly
when you create the LTT model with tf, or by using the set command.

For example, you can specify the delay directly when you create the model,
and then use the set command to assign InputName, OutputName, and Notes
to sys.

sys = tf(1,[1 1], 'Inputdelay',0.3);

set(sys, 'inputname', ‘energy', 'outputname’, 'temperature’,...
'notes','A simple heater model')

1-29

LTI Models

1-30

Finally, you can also use the set command to obtain a listing of all setable
properties for a given LTI model type, along with valid values for these
properties. For the transfer function sys created above

set(sys)
produces

num: Ny-by-Nu cell array of row vectors (Nu = no. of inputs)
den: Ny-by-Nu cell array of row vectors (Ny = no. of outputs)
ioDelay: Ny-by-Nu array of delays for each I/O0 pair
Variable: ['s' | 'p" | 'z'" | 'z*-1'" | 'q']

Ts: Scalar (sample time in seconds)

InputDelay: Nu-by-1 vector

OutputDelay: Ny-by-1 vector

InputName: Nu-by-1 cell array of strings

OutputName: Ny-by-1 cell array of strings

InputGroup: structure with one field per channel group.
OutputGroup: structure with one field per channel group.
Name: String

Notes: Text

UserData: Arbitrary

Accessing Property Values Using get
You access the property values of an LTI model sys with get. The syntax is
PropertyValue = get(sys,PropertyName)

where the string PropertyName is either the full property name, or any
abbreviation with enough characters to identify the property uniquely. For
example, typing

h = tf(100,[1 5 100], 'inputname', 'voltage',...
"outputn','current’,...
‘notes','A simple circuit')
get(h, 'notes"')

produces

ans =

LTI Properties

'A simple circuit'

To display all of the properties of an LTI model sys (and their values), use the
syntax get(sys). In this example,

get(h)
produces
num: {[0 O 1001}
den: {[1 5 1001}
ioDelay: O
Variable: 's'
Ts: O
InputDelay: 0
OutputDelay: 0

InputName: {'voltage'}
OutputName: {'current'}
InputGroup: [1x1 struct]

OutputGroup: [1x1 struct]
Name: "'
Notes: {'A simple circuit'}
UserData: []

Notice that default (output) values have been assigned to any LTI properties
in this list that you have not specified.

Finally, you can also access property values using direct structure-like
referencing. This topic is explained in “Direct Property Referencing Using
Dot Notation” on page 1-31

Direct Property Referencing Using Dot Notation

An alternative way to query/modify property values is by structure-like
referencing. Recall that LTI objects are basic MATLAB structures except for
the additional flag that marks them as TF, ZPK, SS, or FRD objects (see
“Model Objects Represent Linear Systems” on page 1-2). The field names for
LTI objects are the property names, so you can retrieve or modify property
values with the structure-like syntax.

1-31

LTI Models

1-32

PropertyValue = sys.PropertyName % gets property value
SySs.PropertyName = PropertyValue % sets property value

These commands are respectively equivalent to

PropertyValue = get(sys, 'PropertyName')
set(sys, 'PropertyName' ,PropertyValue)

For example, type

sys = ss(1,2,3,4, 'InputName','u');
sys.a

and you get the value of the property "a" for the state-space model sys.

ans =
1

Similarly,
sys.a = -1;
resets the state transition matrix for sys to -1.

Unlike standard MATLAB structures, you do not need to type the entire
field name or use upper-case characters. You only need to type the minimum
number of characters sufficient to identify the property name uniquely. Thus
either of the commands

sys.InputName
sys.inputn

produces
ans =
1 u 1

Any valid syntax for structures extends to LTI objects. For example, given
the TF model h(p) = 1/p

LTI Properties

h =tf(1,[1,0], 'variable','p');

you can reset the numerator to p + 2 by typing

h.num{1} = [1 2];
or equivalently, with

h.num{1}(2) = 2;

Additional Insight into LTI Properties

By reading this section, you can learn more about using the Ts, InputName,
OutputName, InputGroup, and OutputGroup LTI properties through a set of
examples. For basic information on Notes and Userdata, see “Generic LTI
Properties” on page 1-24. For detailed information on the use of InputDelay,
OutputDelay, ioDelay, and InternalDelay, see “Time Delays” on page 1-39.

Sample Time

The sample time property Ts is used to specify the sampling period (in
seconds) for either discrete-time or discretized continuous-time LTI models.
Suppose you want to specify

as a discrete-time transfer function model with a sampling period of 0.5
seconds. To do this, type

h =tf([1 0],[2 1 1],0.5);

This sets the Ts property to the value 0.5, as is confirmed by

h.Ts

ans =
0.5000

For continuous-time models, the sample time property Ts is 0 by convention.
For example, type

1-33

LTI Models

1-34

h =tf(1,[1 0]);
get(h,'Ts")

ans =
0

To leave the sample time of a discrete-time LTI model unspecified, set Ts to
—1. For example,

h =tf(1,[1 -1],-1)
produces

Transfer function:

Sampling time: unspecified
The same result is obtained by using the Variable property.
h = tf(1,[1 -1],'var','z")

In operations that combine several discrete-time models, all specified sample
times must be identical, and the resulting discrete-time model inherits this
common sample time. The sample time of the resultant model is unspecified if
all operands have unspecified sample times. With this inheritance rule for Ts,
the following two models are equivalent.

tf(0.1,[1 -1],0.1) + tf(1,[1 0.5],-1)
and

tf(0.1,[1 -1],0.1) + tf(1,[1 0.5],0.1)
Note that

tf(0.1,[1 -1],0.1) + tf(1,[1 0.5],0.5)

returns an error message.

LTI Properties

??? Error using ==> 1lti/plus
In SYS1+SYS2, both models must have the same sample time.

Caution Resetting the sample time of a continuous-time LTI model sys
from zero to a nonzero value does not discretize the original model sys. The
command

set(sys, 'Ts',0.1)

only affects the Ts property and does not alter the remaining model data. Use
c2d and d2c¢ to perform continuous-to-discrete and discrete-to-continuous
conversions. For example, use

sysd = c2d(sys,0.1)

to discretize a continuous system sys at a 10Hz sampling rate. Use d2d to
change the sample time of a discrete-time system and resample it.

Input Names and Output Names

You can use the InputName and OutputName properties (in short, I/O names) to
assign names to any or all of the input and output channels in your LTI model.

For example, you can create a SISO model with input thrust, output
velocity, and transfer function Hi{p) = 1/(p +10) by typing

h = tf(1,[1 10]);
set(h, 'inputname’, 'thrust', 'outputname', 'velocity',...
'variable', 'p')
Equivalently, you can set these properties directly by typing

h = tf(1,[1 10], 'inputname’', "thrust’',...
'outputname’, 'velocity',...
'variable','p')
This produces

Transfer function from input "thrust" to output "velocity":
1

1-35

LTI Models

1-36

Note how the display reflects the input and output names and the variable
selection.

In the MIMO case, use cell vectors of strings to specify input or output
channel names. For example, type

num = {3 , [1 2]};

den = {[1 10] , [1 O]1};
H = tf(num,den); % H(s) has one output and two inputs

set(H, 'inputname’, {'temperature' ; 'pressure'})

The specified input names appear in the display of H.

Transfer function from input "temperature" to output:

Transfer function from input "pressure" to output:
s + 2

To leave certain names undefined, use the empty string ' ' as in

H = tf(num,den, 'inputname',{ 'temperature' ; '' })

Input Groups and Output Groups

In many applications, you may want to create several (distinct or intersecting)

groups of input or output channels and name these groups. For example,
you may want to label one set of input channels as noise and another set
as controls.

To see how input and output groups (I/O groups) work:

LTI Properties

1 Create a random state-space model with one state, three inputs, and three
outputs.

2 Assign the first two inputs to a group named controls, the first output
to a group named temperature, and the last two outputs to a group
named measurements. Note that both InputGroup and OutputGroup are
structures

To do this, type

h = rss(1,3,3);
h.InputGroup.controls=[1 2];
h.OutputGroup.temperature = [1];
h.OutputGroup.measurements = [2 3];
h

These commands result in a state-space model of the following form.

a:
x1 X2 x3
x1 -2.809 1.967 -1.82
X2 -2.432 -2.042 0.8313
x3 1.125 1.655 -1.017
b =
ui u2 ud
x1 -0.7829 0.4801 0
x2 0 0.6682 2.309
x3 -0.2512 -0.07832 0.5246
C:
x1 X2 X3
y1 -0.01179 0 -0.2762
y2 0.9131 0.4855 1.276
y3 0.05594 -0.005005 1.863
d =

1-37

1 171 Models

ui u2 ud
y1 -0.5226 0 0
y2 0.1034 0 0.2617
y3 -0.8076 0 0

Input groups:
Name Channels
controls 1,2

Output groups:

Name Channels
temperature 1
measurements 2,3

Continuous-time model.

Similarly, you can add or delete channels from an existing input or output
group by redefining the group members, For example,

h.OQutputGroup.temperature=[1 2]

adds the second output to the temperature group. To delete a channel from a
group, just respecify it. For example,

h.OutputGroup.temperature=[1]

restores the original temperature group by deleting output #2 from the group.

1-38

Time Delays

Time Delays

In this section...

“Supported Types of Delays” on page 1-39

“Available Properties for Modeling Delays” on page 1-40
“Input and Output Delays” on page 1-40

“Specifying I/O Delays in MIMO Models” on page 1-43
“Internal Delays” on page 1-45

“Analyzing Systems With Delays” on page 1-48

“Eliminating Time Delays: Padé Approximation and Thiran Filters” on
page 1-55

“Sensitivity Analysis” on page 1-60

“Specifying Delays in Discrete-Time Models” on page 1-62
“Discretization” on page 1-67

“Functions That Support Internal Time Delays” on page 1-70
“Functions That Do Not Support Internal Time Delays” on page 1-70
“Inside Time Delay Models” on page 1-71

Supported Types of Delays

You can use Control System Toolbox tools to perform accurate analysis of LTI
systems with time delays. Such systems are common, particularly in process

control applications. You can create, manipulate, and analyze any LTI model
with a finite number of delays.

Delays can occur at

Inputs
Outputs
Between individual I/O pairs

Internally (for example, inside a feedback loop)

1-39

1 171 Models

Available Properties for Modeling Delays

Transfer function (TF), zero-pole-gain (ZPK), and frequency response data
(FRD) objects have three properties for modeling delays:

® InputDelay — Specify delays at the inputs.

® QutputDelay — Specify delays at the outputs.

® I0Delay — Specify independent transport delays for individual I/O pairs.

State-space (SS) objects have three properties as well:

® InputDelay — Specify delays at the inputs.
® QuputDelay — Specify delays at the outputs.

® InternalDelay — Keep track of delays when combining models with
internal/external delays or closing feedback loops.

Since SS objects can keep track of internal delays, state-space representation
is best suited for modeling and analyzing delay effects in control systems.

Input and Output Delays

The simplest type of delays are delays in the input and output channels.
The InputDelay and OutputDelay properties let you specify such delays.
Use theInputDelay property to specify delays at the model inputs and the
OutputDelay property to specify delays at the outputs. For example, you can
specify a first-order transfer function with deadtime (which is common in
process control applications):

—2s
e
k(s) =
(®) s+1
s = tf('s");

sys = 1/(s+1);
sys.InputDelay = 2

Transfer function:

exp(-2*s) * -----

1-40

Time Delays

creates a system with a 2 s. delay.

Likewise, use the OutputDelay property to specify output delays. For
example:

sys.OuputDelay = 1.5;

Specifying Input and Output Delays in State-Space Models

You can also specify state-space models with delays at the inputs or outputs.
For example,

% =-2x@)+ut-1.8)
dt
(&) =Tx(t)

can be specified with

sysi1=ss(-2,1,7,0, 'InputDelay',1.8)

a =
X1
x1 -2
b =
ut
x1 1
C =
X1
yi
d =
ut
yi

Input delays (listed by channel): 1.8

Continuous-time model.

1-41

1 171 Models

The model has an input delay of 1.8 s. Similarly, to create the model:

dx
i —2x(t) + u(t)

y(@) = Tx(t—-1.8)
with a 1.8 s. delay at the output, use:
sys2=ss(-2,1,7,0, 'OutputDelay', 1.8);

sys2.0utputDelay
ans =

1.8000

Compare the step response of the two systems:

step(sys1,sys2);
grid
legend('System with input delay', 'System with output delay')

1-42

Time Delays

JFiguer =10 x|
File Edit VYiew Insert Tools Desktop ‘Window Help a
DedES k|RaQM® | 0E 50
Step Response
35 T T T T T T
c System with input delay | |
System with output delay |} | .
3 -------
| i R e e e e e e EEEE R L REERE
= . .
2 . .
= . .
21 ARG SRS SRS SRS U S N R A S
B -------
) VR S S SN SO SV SRR (OSSN R
T | | | I I I I
] 05 1 15 2 25 & &3 4 4.5 &
Time (sec)

The response is exactly the same for both systems. The difference lies in state

trajectories. Since the y(f)’s are equal,

xl(t) = X2(t - 18)

where x, is the state of sys1, and x, is the state of sys2.

Specifying 1/O Delays in MIMO Models

You can also specify independent delays on each entry of a MIMO TF or ZPK
model. Transport delays from a given input to a given output of a MIMO
system are called 1/0 delays. For example, to create this 2-by-2 transfer

function with four I/O delays:

1-43

LTI Models

1-44

E—D.ls 2 E—U.Es s+1

His) = 5 s+ 10
10 E—EI.E.'; 5—-1

5+ 5

Use exp to specify the delays and apply them to each entry:

s=tf('s'); % Laplace variable
sys= exp(-s*[0.1 0.3; 0 0.2]).* ..
[2/s (s+1)/(s+t10); 10 (s-1)/(s+5)]

Transfer function from input 1 to output...
2

#1: exp(-0.1*s) * -
s

#2: 10

Transfer function from input 2 to output...

s + 1
#1: exp(-0.8*s) * ------
s + 10
s - 1
#2: exp(-0.2*s) * -----
s +5

Using the ioDelay Property to Specify Delays

You could also have specified the delays by setting the ioDelay property.
s=tf('s");
sys= [2/s (s+1)/(s*+10); 10 (s-1)/(s+5)];

(-
tau = [0.1 0.3; 0 0.2]; % Create I/0 delay matrix.
sys.ioDelay = tau; % Add I/0 delays to sys.

You can retrieve the I/0 delay values using the following:

sys.ioDelay

Time Delays

ans =
0.1000 0.3000
0 0.2000

Internal Delays

Using the InputDelay, OutputDelay, and ioDelay properties, you can model
simple processes with transport delays, but you cannot model more complex
situations, like a feedback loop with delays. In addition to the InputDelay
and OutputDelay properties, state-space (SS) models have an InternalDelay
property, that lets you model interconnection of systems with input, output, or
I/0 delays, including feedback loops with delays. You can use this feature to
accurately model and analyze arbitrary linear systems with delays. Internal
delays can arise from the following:

® Concatenating state-space models with input and output delays

® Feeding back a delayed signal
¢ Converting MIMO TF or ZPK models with I/O delays to state space

Using internal time delays, you can do the following:

¢ In continuous time, generate approximate-free time and frequency
simulations, since delays are no longer replaced by a Padé approximation.
In continuous time, this allows for more accurate analysis of systems with
long delays.

¢ In discrete time, you can keep delays separate from other system dynamics.
Delays are not replaced with poles at z=0, which boosts efficiency of time
and frequency simulations for discrete-time systems with long delays.

¢ Use most Control System Toolbox functions.

¢ Test advanced control strategies for delayed systems. For example, you
can implement and test an accurate model of a Smith predictor. See the
Smith predictor demo.

See “Inside Time Delay Models” on page 1-71 for more information about how
internal delay are modeled.

1-45

1-46

Why Internal Delays Are Necessary

Why are input, output, and I/O delays not enough to model systems? Consider
the simple feedback loop with a 2 s. delay:

The closed-loop transfer function is
e—23

s+2+e 28

While the delay term in the numerator can be represented as an output delay,
the delay term in the denominator cannot. In order to model the effect of the
delay on the feedback loop, an additional property is needed to keep track of
internal coupling between delays and ordinary dynamics.

Building Models with Internal Delays

Typically, state-space models with internal delays are not created by
specifying A, B, C, and D matrices together with a set of internal delays.
Rather, build such models by connecting simpler LTI models (some with I/O
delays) in series, parallel, or feedback. There is no limitation on how many
delays are involved and how the LTI models are connected. For example,
consider the following control loop, where the plant is modeled as first-order
plus dead time.

+
1 Fa-d.4s
off+ L -
’ (5 o+ d

Using the state-space representation, you can derive model T for the
closed-loop response from r to y with the following commands:

Time Delays

tf('s');
ss(5*exp(-3.4*s)/(s+1));
0.1 * (1 + 1/(5*s));

= feedback(P*C,1)

—4 O T »n
1l

These commands produce the result:

a:
X1 X2
x1 -1.5 0.32
x2 -0.3125 0
b:
ui
x1 0.2
x2 0.125
C:
X1 X2
yli 2.5 0
d:

yi
(values computed with all internal delays set to zero)
Internal delays: 3.4

Continuous-time model.

1-47

LTI Models

1-48

Review the following considerations when you work with models with internal
delays:

® The software converts model from TF representation to SS.

® The software fully supports feedback loops. You can wrap a feedback loop
around any system with delays.

® When displaying the A, B, C, and D matrices, the software sets all delays to
zero (creating a zero-order Padé approximation).

For some systems, setting delays to zero creates singular algebraic loops,
which result in either improper or ill-defined, zero-delay approximations.
For these systems, typing the command

= sys returns only sizes for the matrices of a system named sys.
= sys.a produces an error.

The limited display and the error do not imply a problem with the model
sys itself.

You can create arbitrary linear systems with delays using combinations of
state-space models and interconnection functions. Build complex models
incrementally by interconnecting smaller models. You can decompose complex
diagrams unless you have lumped delays (as in integral equations). After you
create a system with internal delays, you can view and change the delays’
values using dot notation. For example, entering:

T.InternalDelay = 1.5;

changes the internal delay of the closed-loop system to 1.5. You cannot modify
the number of internal delays because they are structural properties of the
model. You can, however, set the delays to O or change their values.

Analyzing Systems With Delays

You can use the usual analysis commands (step, bode, margin, ...) to
analyze systems with delays. The software makes no approximations when
performing such analysis.

For example, use this code to see the closed-loop step response of T.

Time Delays

step(T)

grid, title('Closed-loop step response')

=0l x|

Deskkop Window Help

View Insert Tools

Edit

File:

D& h|RaMH®|E 08 5O

Clozed-loop step response

P e

[——

[

[

[

[

b Mmoo o_ao oo

PR

[RR

[RR

[RR

[RR A

P e

[——

[

[

[

[

Ll il Eaelibeld kil

Lececeeboceceaboceceabocececdoceceadocececdonccccdoncocadonean—

Fe======f=====--f=-----p------gp------

B e e mdm e e e m - —

Ep———

R ———

R ———

R ———

R ———

Lececeeboceceaboceceabocececdoceceadocececdonccccdoncocadonean—

il st il dl il et il il kil Aelellaleldt Akl

1
0g------

08 ------

0§ ---1--

08 --4---
o4 --]---

aphydury

03 --f---

02 --f---

0 -

=1] 7o a0 a0 100

a0

20 30 40
Time (sec)

10

For more complicated interconnections, you can name the input and output

signals of each block and use connect to automatically take care of the wiring.
Suppose, for example, that you want to add feedforward to the control loop

of the previous model.

1-49

1 171 Models

0.3 L
s+4

i + sa-dds ¥
+) e —_—T
a1t 55) u u S+7

You can derive the corresponding closed-loop model T by

F = 0.3/(s+4);

P.InputName = 'u'; P.OutputName = 'y';
C.InputName = 'e'; C.OutputName = 'uc';
F.InputName = 'r'; F.OutputName = 'uf';

Sumi = sumblk('e','r','y',"'+-"); % e =r-y
Sum2 = sumblk('u','uf','uc','++"'); % u = uf+uc

Tff = connect(P,C,F,Sum1,Sum2,'r',"'y"');

and compare its response with the feedback only design.

step(T,'b',Tff,'r")

legend('No feedforward', 'Feedforward')

grid

title('Closed-loop step response with and without feedforward')

1-50

Time Delays

Chrguet ~lolx|

File Edit Wiew Insert Tools Desktop ‘Window Help a

DEEE |RaOse|€ 08 8O0

Clozed-loop step response with and without feedforward
From: ¢ To:y
1 4 T T T T T T T T T
Mo feedforward

Feedfarward

Amplitude

Time (sec)

Considerations to Keep in Mind when Analyzing Systems with
Internal Time Delays

The time and frequency responses of delay systems can look odd and
suspicious to those only familiar with delay-free LTI analysis. Time responses
can behave chaotically, Bode plots can exhibit gain oscillations, etc. These are
not software or numerical quirks but real features of such systems. Below are
a few illustrations of these phenomena.

Gain ripple:

s=tf('s');
G = exp(-5*s)/(s+1);
T = feedback(ss(G),.5);

1-51

LTI Models

1-52

bodemag(T)

rguet ~-lolx|

File Edit Wiew Insert Tools Desktop ‘Window Help a

D& h|RaMH®|E 08 5O

Bode Diagram
10 T T T T

lagnitude (dB)

-B0 1 sl 11l L1l L 1l T I R)
2 =il i

107° 10 10" 10 10° 10°
Freguency (radizec)

Gain oscillations:

G = ss(1) + 0.5 * exp(-3*s);
bodemag (G)

Time Delays

| JAgurer -0 x|
File Edit View Insert Tools Desktop Window Help e
NEHde | LARXODEL- |2 |0E e
Bode Diagram
4 T T g

Magnitucke (clBy)

10 10 10’ 1o’

Frequency (rad'sec)

Jagged step response:

G = exp(-s) * (0.8*s"2+s+2)/(s"2+s);
T feedback(ss(G),1);
step(T)

1-53

1 171 Models

Crguet ~lolx|

File Edit Wiew Insert Tools Desktop ‘Window Help

NedE& aRadms |/ 08 8O

Step Response
1.8 T T T T

Amplitude

02

Time (sec)

Note the rearrivals (echoes) of the initial step function.

Chaotic response:

G = ss(1/(st1)) + exp(-4*s);
T = feedback(1,G);
step(T)

1-54

Time Delays

rguet ~lolx|

File Edit Wiew Insert Tools Desktop ‘Window Help a

NedE& aRadms |/ 08 8O

Step Response
1 5 T T T T T T

Amplitude
T
=
s
——_Ii—
o
—

1 | | | 1 | |
1] 20 40 (=10] a0 100 120 140

Time (sec)

You can use Control System Toolbox tools to model and analyze these and
other strange-appearing artifacts of internal delays.

Eliminating Time Delays: Padé Approximation and
Thiran Filters

Many control design algorithms cannot handle time delays directly. For
example, techniques such as root locus, LQG, and pole placement do not
work properly if time delays are present. A common technique is to replace
delays with all-pass filters that approximate the delays. To approximate
time delays in:

¢ Continuous time — use the Padé approximation.

1-55

LTI Models

1-56

® Discrete time — use a Thiran filter.

Approximating Time Delays in Continuous Time

Use the pade command to compute Padé approximations of time delays
in continuous-time systems. The Padé approximation is valid only

at low frequencies. It is therefore important to compare the true and
approximate responses to choose the right approximation order and check
the approximation validity.

For example, consider a system with a PI controller:

BRI

Use this code to implement the system:

tf('s');
exp(-2.6*s)*(s+3)/(s"2+0.3*s+1);
= 0.06 * (1 + 1/s);
feedback(ss(P*C),1);

—4 O T »n
|

For the PI controller, you can compare the exact closed-loop response T with
the response obtained for a first-order Padé approximation of the delay:

T1 = pade(T,1);
step(T,'b--',T1,'r',100)
grid, legend('Exact','First-Order Pade')

Time Delays

Crguet ~lolx|

File Edit Wiew Insert Tools Desktop ‘Window Help a

DS K RAMe|E | 0E 7O

Step Response

1.2

0.s - bbb e g oo —— — Euact
First-Crder Pade

73 S N S SN SN SO SUSN SO

Amplitude

' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' '
I | T S e T B —
. ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' '
' ' ' '

0 S -

1] 10 20 30 40 =0 1] 7o g0 a0 100
Time (sec)

The approximation error is large. To get a better approximation, try a
second-order Padé approximation of the delay:

T2 = pade(T,2);

step(T,'b--"',T2,'r',100)
grid, legend('Exact','Second-Order Pade')

1-57

1 171 Models

Chrguet ~lolx|

File Edit Wiew Insert Tools Desktop ‘Window Help a

DEEE |RaOse|€ 08 8O0

Step Response
1 2 T T T T T T T T T

- TR 58 1S S S S SN S — — Exant L
, : : : . Second-Order Pade

71 S O S SN SN SO SUSN SO

Amplitude

' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' '

I B e e S el e T e —
. ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' '

0 . -

Time (sec)

The responses now match closely except for the nonminimum phase artifact
(“wrong way” effect) introduced by the Padé approximation.

Approximating Time Delays in Discrete Time

When converting a continuous-time delay into discrete time, you can use
the thiran command to approximate the delay in discrete time as a Thiran
all-pass filter.

For a time delay of tau and a sampling time of Ts, thiran(tau, Ts) creates a
discrete-time transfer function that is the product of two terms:

® A term representing the integer portion of the time delay as a pure line
delay, (1/z)N, where N = ceil(tau/Ts).

1-58

Time Delays

® A term approximating the fractional portion of the time delay (tau - NTs)
as a Thiran all-pass filter.

Discretizing a Padé approximation does not guarantee good phase matching
between the continuous-time delay and its discrete approximation. Using
thiran to generate a discrete-time approximation of a continuous-time delay
can yield much better phase matching. For example, the following figure
shows the phase delay of a 10.2-second time delay discretized with a sample
time of 1 s, approximated in three ways:

® 3 first-order Padé approximation, discretized using the tustin method of
c2d

¢ an 11th-order Padé approximation, discretized using the tustin method of
c2d

e an 11th-order Thiran filter

T = 10.25 with sample time of Ts = 1=

— o2d on pade of order 1
— o2d on pade of order 11
— Thiran all-pass filter of order 11

FPhase Delay (sec)

4] 05 1 1.5 2 2.5 3 a5
Frequency (radisec) 02w =nTs

The Thiran filter yields the closest approximation of the 10.2-second delay.

See the thiran reference page for more information about Thiran filters.

1-59

LTI Models

1-60

Sensitivity Analysis

Delays are rarely known accurately, so it is often important to understand
how sensitive a control system is to the delay value. Such sensitivity analysis
is easily performed using LTT arrays and the InternalDelay property. For
example, consider this notched PI control system developed in “PI Control
Loop with Dead Time” from the Analyzing Control Systems with Delays demo.

% Create a 3rd-order plant with a PI controller and notch filter.
= tf('s');

exp(-2.6*s)*(s+3)/(s"2+0.3*s+1);

= 0.06 * (1 + 1/s);

feedback(ss(P*C),1)

notch = tf([1 0.2 1],[1 .8 1]);

C=0.05* (1 +1/s);

Tnotch = feedback(ss(P*C*notch),1);

=4 O v on
I

Create five models with delay values ranging from 2.0 to 3.0:

o°

tau = linspace(2,3,5);
Tsens = repsys(Tnotch,[1 1 5]);

5 delay values

5 copies of Tnotch
for j=1:5

jth delay value

-> jth model end

o® o

o°

Tsens(:,:,j).InternalDelay = tau(j);

o°

% Use step to create an envelope plot.

step(Tsens)

grid

title('Closed-loop response for 5 delay values between 2.0 and 3.0')

Time Delays

Crguet ~lolx|

File Edit Wiew Insert Tools Desktop ‘Window Help a

NedE& aRadms |/ 08 8O

Clozed-loop response for 5 delay values between 20 and 3.0
1 4 T T T T T T T

..., =

Amplitude

Time (sec)

This plot shows that uncertainty on the delay value has little effect on
closed-loop characteristics. Note that while you can change the values of
internal delays, you cannot change how many there are because this is part of
the model structure. To eliminate some internal delays, set their value to 0
or use pade with order zero:

TnotchO0 = Tnotch;
TnotchO0.InternalDelay = 0;

bode(Tnotch, 'b',Tnotch0,'r',{1e-2,3})

grid, legend('Delay = 2.6','No delay', 'Location', 'SouthWest')

1-61

1 171 Models

1-62

Crguet ~lolx|

File Edit Wiew Insert Tools Desktop ‘Window Help a

DEEE |RaOse|€ 08 8O0

Bode Diagram

Magnitude [dB)

Phase (deg)

-540 - Delay = 26
Mo delay H Vo '
720 b R AT TN NN N PG SO0 1 1Y RO
107 107" 10

Freguency (radizec)

Specifying Delays in Discrete-Time Models
Discrete-time delays are handled in a similar way, but have some minor
differences:

¢ Discrete-time delays are always integer multiples of the sampling period.

* Discrete-time delays are equivalent to poles at z=0, so it is always possible
to absorb delays into the model dynamics (see delay2z). Keeping delays
separate is better for performance, especially for systems with long delays
compared to the sampling period.

For example, to specify the first-order model

Time Delays

2

H(z) = 222
z—0.25

with sampling period Ts=0.1, and a delay of 25 sample periods, use

H = tf(2,[1 -0.95],0.1, 'inputdelay',25)

step(H)
rgwer =
File Edit ‘iew Insert Tools Deskbop Window Help o
DeEE& K|Ra®® € 08 =50
Step Response
40 : T
35 -
30 - -
25 .
L]
=
£ 20f .
[=8
5
15 -
10 - -
5 L -
D 1 1
o & 10 15
Time (sec)

The equivalent state-space representation is:

T
1}

ss(H)

X1

1-63

1 171 Models

x1 0.95
b =
ut
x1 2
C =
X1
y1 1
d =
ui
y1

Input delays (listed by channel): 25

Sampling time: 0.1
Discrete-time model.

Example: Discrete-Time Model with Delayed Feedback
Next, consider the feedback loop below where g is a pure gain.

-25
."—»Q -—‘ g - 2z ¥
Z-0.85

To compute the closed-loop response for g=0.01, type:

g = .01;
T = feedback(g*H,1)
step(T)

1-64

Time Delays

rguet ~lolx|

File Edit Wiew Insert Tools Desktop ‘Window Help

NedE& aRadms |/ 08 8O

Step Response

Amplitude

Time (sec)

T is still a first-order model with an internal delay of 25 samples. For
comparison, map all delays to poles at z=0 using delay2z:

T1 = delay2z(T);
order(T1)
ans =

26

The resulting model has 26 states and is therefore less efficient to simulate.
As expected, however, the step responses of T and T1 match exactly:

step(T,'b',T1,'r--")
legend('T','T1")

1-65

1 171 Models

JFiguwer ~-lolx|

File Edit VYiew Insert Tools Desktop ‘Window Help a

DS K RAMe|$ | 0E 7O

Step Response

Amplitude

n] | 1 | 1

Time (sec)

In general, it is recommend to keep delays separate, except when analyzing
the closed-loop dynamics of models with internal delays. For example:

rlocus(H)

axis([-1.25 1.25 -1.25 1.25])

1-66

Time Delays

rgwrer 0]
File Edit Wiew Insert Tools Desktop ‘Window Help a
NEeEdE K|Ra®s | 08 5O
Root Locus
T T T T T T T
1 [r _
05 e -
o}
&
E) O ey -t 4% S -
o
E
05 F I‘.L i ’f'f -
ERS _
| | i 1 1 | |
-1 -0.5 0] 0.5 1 15 2
Feal Axis
(] o o
Discretization

You can use c2d to discretize continuous-time delay systems. Available
methods include zero-order hold (ZOH), first-order hold (FOH), and Tustin.
For models with internal delays, the ZOH discretization is not always exact,
1.e., the continuous and discretized step responses may not match:

tf('s');
exp(-2.6*s)*(s+3)/(s"2+0.3*s+1);

= 0.06 * (1 + 1/s);

feedback(ss(P*C),1);

Td = c2d(T,1); step(T,'b',Td,'r")

grid, legend('Continuous','ZOH Discretization')

O T onw
|

1-67

1 171 Models

Fguet ~=lol x|

File Edit ‘iew Insert Tools Deskbop Window Help o

DeR&E KRQaM®|E | 0B ° O

Step Response

1.4 T T T T T T
i i i H Cortinuous
i i i H FOH Dizcretization
12p--mnnn-- P P P P ;
) - L :

i) DB ==-" =" e e -
= 1 H 1 1
£
= 1 H 1 1
T O o S O S SR S breneaea .
173 S | R SN SRR P e e feeeeeeee -
7 O S S S SN SO SRS S -
; | | | i | |
a 10 20 a0 40 S0 G0 i

Time (sec)

To correct such discretization gaps, reduce the sampling period until the
continuous and discrete responses match closely:

Td = ¢c2d(T,0.05); step(T,'b',Td,'r")
grid, legend('Continuous','ZOH Discretization')

Warning: Discretization is only approximate due to internal delays.
Use faster sampling rate if discretization error is large.

1-68

Time Delays

rguet ~lolx|

File Edit Wiew Insert Tools Desktop ‘Window Help a

DS K RAMe|E | 0E 7O

Step Response

1 4 T T T T T T
1 1 | Continuaus
ZOH Discretization

Amplitude

Time (sec)

Note that internal delays remain internal in the discretized model and do
not inflate the model order:

order(Td)
ans =

For more information about discretizing systems with time delays, see
“Converting Between Continuous- and Discrete-Time Representations” on
page 2-24 and the c2d reference page.

1-69

1 171 Models

Functions That Support Internal Time Delays
The following commands support internal delays for both continuous- and

discrete-time systems:
¢ All interconnection functions
¢ Time domain response functions—except for impulse and initial

¢ Frequency domain functions—except for norm

Limitations on Functions that Support Internal Time Delays

The following commands support internal delays for both continuous- and
discrete-time systems and have certain limitations:

e allmargin, margin—Uses interpolation, therefore these commands are
only as precise as the fineness of the specified grid.

® pole, zero—Returns poles and zeros of the system with all delays set to
Zero.

® ssdata, get—If an SS model has internal delays, these commands return
the A, B, C, and D matrices of the system with all internal delays set to
zero. Augmented state-space equations keep track of which internal delays
enter the model.

Functions That Do Not Support Internal Time Delays

The following commands do not support internal time delays:

® System dynamics—norm and 1ti/isstable

¢ Time-domain analysis—initial and initialplot

e Model simplification—balreal, balred, and modred

¢ Conversions—to ZPK and TF representations

¢ Compensator design—rlocus, 1qg, 1qry, 1qrd, kalman, kalmd, lqgreg,
lggtrack, 1gi, and augstate

In addition, the SISO Design Tool does not accept systems with internal
delays.

1-70

Time Delays

Inside Time Delay Models

State-space objects use generalized state-space equations to keep track of
internal delays. Conceptually, such models consist of two interconnected
parts:

¢ An ordinary state-space model H(s) with an augmented I/O set

e A bank of internal delays.

Lt ¥ii)

Y

H(s)

wii) EXP(-T, 5) = ()

BX (T 5)

The corresponding state-space equations are:

x = Ax(¢) + Byu(t) + Bow(t)

(&) = Cix(¢) + Dyqu(t) + Dyow(t)
2(t) = Cox(t) + Doyu(t) + Dogw(t)
wj(t) = z(t—rj), j=1..,N

You need not bother with this internal representation to use the tools. If,
however, you want to extract H or the matrices A,B1,B2, ,... , you can use
getDelayModel, For the example:

1-71

1 171 Models

P 5*exp(-3.4*s)/(s+1);
C=0.1* (1 4+ 1/(5%s));
T = feedback(ss(P*C),1);
[H,tau] = getDelayModel(T,'1ft'); size(H)

Note that H is a two-input, two-output model whereas T is SISO. The
inverse operation (combining H and tau to construct T) is performed by
setDelayModel.

See [3, 4] for details.

1-72

Model Conversion

Model Conversion

In this section...

“Available Model Formats” on page 1-73
“Explicit Conversion” on page 1-73

“Automatic Conversion” on page 1-74

“Caution About Model Conversions” on page 1-75

Available Model Formats

You can use the following LTI model formats:

TF
ZPK
SS
FRD

This section shows how to convert models from one format to the other.

Explicit Conversion

Model conversions are performed by tf, ss, zpk, and frd. Given any TF, SS,
or ZPK model sys, the syntax for conversion to another model type is

sys = tf(sys)

sys = zpk(sys)

SyS = SS(Sys)

sys = frd(sys,frequency)

% Conversion to TF
% Conversion to ZPK
% Conversion to SS

% Conversion to FRD

Notice that FRD models can’t be converted to the other model types. In
addition, you must also include a vector of frequencies (frequency) as an
input argument when converting to an FRD model.

1-73

LTI Models

1-74

For example, you can convert the state-space model
sys = ss(-2,1,1,3)

to a zero-pole-gain model by typing
zpk(sys)

This command results in

Zero/pole/gain:
3 (s+2.333)

Note that the transfer function of a state-space model with data (4, B, C, D)
is

H(s)= D+C(sI-A)"'B
for continuous-time models, and

Hiz) = D+ CzI-A"'B

for discrete-time models.

Automatic Conversion

Some algorithms operate only on one type of LTI model. For example, the
algorithm for zero-order-hold discretization with c2d can only be performed
on state-space models. Similarly, commands like tfdata expect one particular
type of LTI models (TF). For convenience, such commands automatically
convert LTI models to the appropriate or required model type. For example, in

sys = ss(0,1,1,0)
[num,den] = tfdata(sys)

tfdata first converts the state-space model sys to an equivalent transfer
function in order to return numerator and denominator data.

Model Conversion

Conversions to state-space models are not uniquely defined. For this reason,
automatic conversions to state space are disabled when the result depends
on the choice of state coordinates, for example, in commands like initial or
kalman.

Caution About Model Conversions
When manipulating or converting LTI models, keep in mind that:

e The three LTI model types TF, ZPK, and SS, are not equally well-suited
for numerical computations. In particular, the accuracy of computations
using high-order transfer functions is often poor. Therefore, it is often
preferable to work with the state-space representation. In addition, it is
often beneficial to balance and scale state-space models. You get this type
of balancing automatically when you convert any TF or ZPK model to state
space using SS.

¢ Conversions to the transfer function representation using tf may incur a
loss of accuracy. As a result, the transfer function poles may noticeably
differ from the poles of the original zero-pole-gain or state-space model.

* Conversions to state space are not uniquely defined in the SISO case, nor
are they guaranteed to produce a minimal realization in the MIMO case.
For a given state-space model sys,

ss(tf(sys))
may return a model with different state-space matrices, or even a different

number of states in the MIMO case. Therefore, if possible, it is best to avoid
converting back and forth between state-space and other model types.

1-75

LTI Models

1-76

Simulink Block for LTI Systems

You can incorporate LTI objects into Simulink diagrams using the LTI
System block shown below.

-0l

File Edit Wew Simulation Format Tools Help

DSHE| s BB e ¢ <
Lt syt mock W ion o porameters L system zn

for use with the - LTI Block [mask] (link)

Control System Toolbox The LTI Syztem block accepts both continuous and dizcrete LTI models az defined
in the Control System Toolbox, Transfer function, state-space, and zero-pole-gain
formats are all supported in this black.

L1 10

Mote: Initial states are only meaningful for state-space systems.

P,
F

F|100% [[\ [odess LTI system wariable

H1L1 1)
Initial states [state-space only)

Jo

Double-click on the block in your
Simulink diagram to display or

modify model information. [ok | cacel | Hep ponr

The LTI System block can be accessed either by typing

1tiblock

at the MATLAB prompt or by selecting Control System Toolbox from the
Blocksets and Toolboxes section of the main Simulink library.

The LTI System block consists of the dialog box shown on the right in the
figure above. In the editable text box labeled LTI system variable, enter
either the variable name of an LTI object located in the MATLAB workspace
(for example, sys) or a MATLAB expression that evaluates to an LTI object
(for example, tf(1,[1 1])). The LTI System block accepts both continuous
and discrete LTI objects in either transfer function, zero-pole-gain, or
state-space form. All types of delays are supported in the LTI block. Simulink
converts the model to its state-space equivalent prior to initializing the
simulation.

Simulink® Block for LTI Systems

Use the editable text box labeled Initial states to enter an initial state vector
for state-space models. The concept of "initial state" is not well-defined for
transfer functions or zero-pole-gain models, as it depends on the choice of
state coordinates used by the realization algorithm. As a result, you cannot
enter nonzero initial states when you supply TF or ZPK models to LTI blocks
in a Simulink diagram.

1-77

LTI Models

1-78

References

[1] Dorf, R.C. and R.H. Bishop, Modern Control Systems, Addison-Wesley,
Menlo Park, CA, 1998.

[2] Wood, R.K. and M.W. Berry, "Terminal Composition Control of a Binary
Distillation Column," Chemical Engineering Science, 28 (1973), pp. 1707-1717.

[3] P. Gahinet and L.F. Shampine, "Software for Modeling and Analysis of
Linear Systems with Delays," Proc. American Control Conf., Boston, 2004,
pp. 5600-5605

[4] L.F. Shampine and P. Gahinet, Delay-differential-algebraic Equations in
Control Theory, Applied Numerical Mathematics, 56 (2006), pp. 574-588

Operations on LTI Models

® “Overview” on page 2-2

¢ “Precedence and Property Inheritance” on page 2-3
* “Viewing LTI Systems as Matrices” on page 2-5

e “Data Retrieval” on page 2-6

e “Extracting and Modifying Subsystems” on page 2-8
® “Arithmetic Operations on LTI Models” on page 2-15
e “Model Interconnection Functions” on page 2-20

® “Converting Between Continuous- and Discrete-Time Representations”
on page 2-24

¢ “Resampling of Discrete-Time Models” on page 2-37

e “References” on page 2-41

2 Operations on LTI Models

2-2

Overview

You can perform basic matrix operations such as addition, multiplication, or
concatenation on LTI models. Such operations are "overloaded," which means
that they use the same syntax as they do for matrices, but are adapted to
apply to LTI objects. These overloaded operations and their interpretation in
this context are discussed in this chapter. You can read about discretization
methods in this chapter as well.

These operations can be applied to LTI models of different types. As a result,
before discussing operations on LTI models, we discuss model type precedence
and how LTI model properties are inherited when models are combined using
these operations. To read about how you can apply these operations to arrays
of LTI models, see “Operations on LTI Arrays” on page 4-27. To read about
functions for analyzing LTI models, see Chapter 3, “Model Analysis Tools”.

Precedence and Property Inheritance

Precedence and Property Inheritance

You can apply operations to LTI models of different types. Operations on
systems of different types work as follows: the resulting type is determined
by the precedence rules, and all operands are first converted to this type
before performing the operation. Operations like addition and commands
like feedback operate on more than one LTI model at a time. If these LTI
models are represented as LTI objects of different types (for example, the first
operand is TF and the second operand is SS), it is not obvious what type (for
example, TF or SS) the resulting model should be. Such type conflicts are
resolved by precedence rules. Specifically, TF, ZPK, SS, and FRD objects are
ranked according to the precedence hierarchy:

FRD >SS >ZPK>TF

Thus ZPK takes precedence over TF, SS takes precedence over both TF and
ZPK, and FRD takes precedence over all three. In other words, any operation
involving two or more LTI models produces:

e An FRD object if at least one operand is an FRD object

® An SS object if no operand is an FRD object and at least one operand
is an SS object

® A ZPK object if no operand is an FRD or SS object and at least one is an
ZPK object

e A TF object only if all operands are TF objects

For example, if sys1 is a transfer function and sys2 is a state-space model,
then the result of their addition

sys = sysi1 + sys2

1s a state-space model, since state-space models have precedence over transfer
function models.

To supersede the precedence rules and force the result of an operation to be a
given type, for example, a transfer function (TF), you can either

e Convert all operands to TF before performing the operation

2 Operations on LTI Models

2-4

e Convert the result to TF after performing the operation

Suppose, in the above example, you want to compute the transfer function of
sys. You can either use a priori conversion of the second operand

sys = sys1 + tf(sys2);
or a posteriori conversion of the result

sys = tf(sysl + sys2)

Note These alternatives are not equivalent numerically; computations are
carried out on transfer functions in the first case, and on state-space models
in the second case.

Another issue is property inheritance, that is, how the operand property
values are passed on to the result of the operation. While inheritance is partly
operation-dependent, some general rules are summarized below:

¢ In operations combining discrete-time LTI models, all models must have
identical or unspecified (sys.Ts = -1) sample times. Models resulting
from such operations inherit the specified sample time, if there is one.

®* Most operations ignore the Notes and Userdata properties.

® In general, when two LTI models sys1 and sys2 are combined using
operations such as +, *, [, 1, [; 1, append, and feedback, the resulting
model inherits its I/O names and I/O groups from sys1 and sys2. However,
conflicting I/O names or I/O groups are not inherited. For example, the
InputName property for sys1 + sys2 is left unspecified if sys1 and sys2
have different InputName property values.

® A model resulting from operations on TF or ZPK models inherits its
Variable property value from the operands. Conflicts are resolved
according the following rules:
= For continuous-time models, 'p' has precedence over 's'.

= For discrete-time models, 'z*-1' has precedence over 'q' and 'z"',
while 'q' has precedence over 'z'.

Viewing LTI Systems as Matrices

Viewing LTl Systems as Matrices

In the frequency domain, an LTI system is represented by the linear
input/output map

y = Hu.

This map is characterized by its transfer matrix H, a function of either the
Laplace or Z-transform variable. The transfer matrix H maps inputs to
outputs, so there are as many columns as inputs and as many rows as outputs.

If you think of L'TT systems in terms of (transfer) matrices, certain basic
operations on LTI systems are naturally expressed with a matrix-like syntax.
For example, the parallel connection of two LTI systems sys1 and sys2 can
be expressed as

Ssys = sys1 + sys2

because parallel connection amounts to adding the transfer matrices.
Similarly, subsystems of a given LTI model sys can be extracted using
matrix-like subscripting. For instance,

Sys(3,1:2)

provides the I/0O relation between the first two inputs (column indices) and
the third output (row index), which is consistent with

2-5

2 Operations on LTI Models

Data Retrieval

The functions tf, zpk, ss, and frd pack the model data and sample time in a
single LTI object. Conversely, the following commands provide convenient
data retrieval for any type of TF, SS, or ZPK model sys, or FRD model sysfr.

[num,den,Ts] = tfdata(sys) % Ts = sample time
[z,p,k,Ts] = zpkdata(sys)

[a,b,c,d, Ts] = ssdata(sys)

[a,b,c,d,e,Ts] = dssdata(sys)
[response,frequency,Ts] = frdata(sysfr)

Note that:

® sys can be any type of LTI object, except an FRD model

e sysfr, the input argument to frdata, can only be an FRD model

You can use any variable names you want in the output argument list of
any of these functions.

The output arguments num and den assigned to tfdata, and z and p assigned
to zpkdata, are cell arrays, even in the SISO case. These cell arrays have

as many rows as outputs, as many columns as inputs, and their ijth entry
specifies the transfer function from the jth input to the ith output. For
example,

H = [tf([1 -1],[1 2 10]) , tf(1,[1 O])]

creates the one-output/two-input transfer function
-1 1
11(3):[_5_5_____ _}_
s“+2s+10 s

Typing

[num,den] = tfdata(H);
num{1,1}, den{1,1}

Data Retrieval

displays the coefficients of the numerator and denominator of the first input
channel.

ans =
0 1 -1

ans =
1 2 10

Note that the same result is obtained using
H.num{1,1}, H.den{1,1}

See “Direct Property Referencing Using Dot Notation” on page 1-31 for more
information about this syntax.

To obtain the numerator and denominator of SISO systems directly as row
vectors, use the syntax

[num,den,Ts] = tfdata(sys,'v')
For example, typing

sys = tf([1 3],[1 2 5]);
[num,den] = tfdata(sys,'v')

produces
num =

0 1 3
den =

1 2 5
Similarly,

[z,p,k,Ts] = zpkdata(sys,'v')

returns the zeros, z, and the poles, p, as vectors for SISO systems.

2-7

2 Operations on LTI Models

Extracting and Modifying Subsystems

In this section...

“What is a Subsystem?” on page 2-8

“Basic Subsystem Concepts” on page 2-8

“Referencing FRD Models Through Frequencies” on page 2-11
“Referencing Channels by Name” on page 2-12

“Resizing LTI Systems” on page 2-13

What is a Subsystem?

Subsystems relate subsets of the inputs and outputs of a system. The transfer
matrix of a subsystem is a submatrix of the system transfer matrix.

Basic Subsystem Concepts

For example, if sys is a system with two inputs, three outputs, and I/O relation
y=Hu

then H(3, 1) gives the relation between the first input and third output:
¥y = H(S, Du,.

Accordingly, use matrix-like subindexing to extract this subsystem.
SubSys = sys(3,1)

The resulting subsystem SubSys is an LTI model of the same type as sys,

with its sample time, time delay, I/O name, and I/O group property values

inherited from sys.

For example, if sys has an input group named controls consisting of

channels one, two, and three, then SubSys also has an input group named
controls with the first channel of SubSys assigned to it.

Extracting and Modifying Subsystems

If sys is a state-space model with matrices a, b, ¢, d, the subsystem sys(3,1)
1s a state-space model with data a, b(:,1), ¢(3,:), d(3,1). Note the
following rules when extracting subystems:

® In the expression sys(3,1), the first index selects the output channel while
the second index selects the input channel.

® When extracting a subsystem from a given state-space model, the resulting
state-space model may not be minimal. Use the command sminreal to
eliminate unnecessary states in the subsystem.

You can use similar syntax to modify the LTI model sys. For example,
sys(3,1) = NewSubSys

redefines the I/0 relation between the first input and third output, provided
NewSubSys is a SISO LTI model.

Rules for Modifying LTI Model Subsystems
The following rules apply when modifying LTI model subsystems:

¢ sys, the LTI model that has had a portion reassigned, retains its original
model type (TF, ZPK, SS, or FRD) regardless of the model type of
NewSubSys.

® Subsystem assignment does not reassign any I/O names or I/O group names
of NewSubSys that are already assigned to NewSubSys.

® Reassigning parts of a MIMO state-space model generally increases its
order.

e If NewSubSys is an FRD model, then sys must also be an FRD model.
Furthermore, their frequencies must match.

Other standard matrix subindexing extends to LTI objects as well. For
example,

Sys(3,1:2)
extracts the subsystem mapping the first two inputs to the third output.

sys(:,1)

2 Operations on LTI Models

2-10

selects the first input and all outputs, and
sys([1 3],:)

extracts a subsystem with the same inputs, but only the first and third
outputs.

For example, consider the two-input/two-output transfer function

1
s+0.1
s—1
s%+25+2

T(s)=

»n | =

To extract the transfer function 7T',,(s) from the first input to the first output,
type

T(1,1)
Transfer function:

Next reassign T',,(s) to 1/(s + 0.5) and modify the second input channel of
T by typing

—
=
- —
—
Z

I

tf(1,[1 0.5]);
[1 ; tf(0.4,[1 0]) 1

Transfer function from input 1 to output...

#1: -------

Extracting and Modifying Subsystems

Transfer function from input 2 to output...
#1: 1

0.4

Referencing FRD Models Through Frequencies

You can extract subsystems from FRD models, as you do with other LTI
model types, by indexing into input and output (I/0) dimensions. You can also
extract subsystems by indexing into the frequencies of an FRD model.

To index into the frequencies of an FRD model, use the string ’Frequency’
(or any abbreviation, such as, ’freq’, as long as it does not conflict with
existing I/O channel or group names) as a keyword. There are two ways you
can specify FRD models using frequencies:

¢ Using integers to index into the frequency vector of the FRD model

¢ Using a Boolean (logical) expression to specify desired frequency points
in an FRD model

For example, if sys is an FRD model with five frequencies, (e.g.,
sys.Frequency=[1 1.1 1.2 1.3 1.4]), then you can create a new FRD
model sys2 by indexing into the frequencies of sys as follows.

sys2 = sys('frequency', 2:3);
sys2.Frequency

ans =
1.1000
1.2000

displays the second and third entries in the frequency vector.

Similarly, you can use logical indexing into the frequencies.

sys2 = sys('frequency',sys.Frequency >1.0 & sys.Frequency <1.15);
sys2.freq

2-11

2 Operations on LTI Models

2-12

ans =
1.1000

You can also combine model extraction through frequencies with indexing into
the I/O dimensions. For example, if sys is an FRD model with two inputs,
two outputs, and frequency vector [2.1 4.2 5.3], with sys.Units specified
in rad/s, then

sys2 = sys(1,2,'freq',1)

specifies sys2 as a SISO FRD model, with one frequency data point, 2.1 rad/s.

Referencing Channels by Name

You can also extract subsystems using I/O group or channel names. For
example, if sys has an input group named noise, consisting of channels two,
four, and five, then

sys(1, 'noise')
1s equivalent to
sys(1,[2 4 5])

Similarly, if pressure is the name assigned to an output channel of the LTI
model sys, then

sys('pressure',1) = tf(1, [1 1])

reassigns the subsystem from the first input of sys to the output labeled
pressure.

You can reference a set of channels by input or output name by using a

cell array of strings for the names. For example, if sys has one output
channel named pressure and one named temperature, then these two output
channels can be referenced using

sys({'pressure', 'temperature'})

Extracting and Modifying Subsystems

Resizing LTI Systems

Resizing a system consists of adding or deleting inputs and/or outputs. To
delete the first two inputs, simply type

sys(:,1:2) =[]

In deletions, at least one of the row/column indexes should be the colon (:)
selector.

To perform input/output augmentation, you can proceed by concatenation or
subassignment. Given a system sys with a single input, you can add a second
input using

sys = [sys,h];

or, equivalently, using

sys(:,2) = h;

where h is any LTI model with one input, and the same number of outputs
as sys. There is an important difference between these two options: while
concatenation obeys the precedence rules, subsystem assignment does not
alter the model type. So, if sys and h are TF and SS objects, respectively,
the first statement produces a state-space model, and the second statement
produces a transfer function.

For state-space models, both concatenation and subsystem assignment
increase the model order because they assume that sys and h have
independent states. If you intend to keep the same state matrix and only
update the input-to-state or state-to-output relations, use set instead and
modify the corresponding state-space data directly. For example,

sys = ss(a,bl,c,d1)
set(sys,'b',[b1 b2],'d"',[d1 d2])

adds a second input to the state-space model sys by appending the B and D

matrices. You should simultaneously modify both matrices with a single set
command. Indeed, the statements

sys.b = [b1 b2]

2-13

2 Operations on LTI Models

and
set(sys,'b',[b1 b2])

cause an error because they create invalid intermediate models in which the
B and D matrices have inconsistent column dimensions.

2-14

Arithmetic Operations on LTI Models

Arithmetic Operations on LTI Models

In this section...

“Supported Arithmetic Operations” on page 2-15
“Addition and Subtraction” on page 2-15
“Multiplication” on page 2-17

“Inversion and Related Operations” on page 2-18

“Transposition” on page 2-18

“Pertransposition” on page 2-19

Supported Arithmetic Operations

You can apply almost all arithmetic operations to LTI models, including those
shown below.

Operation Description
+ Addition
> Subtraction
t Multiplication
.9 Element-by-element multiplication
/ Right matrix divide
\ Left matrix divide
inv Matrix inversion
' Pertransposition
: Transposition
» Powers of an LTI model (as in s*2)

Addition and Subtraction

Adding LTI models is equivalent to connecting them in parallel. Specifically,
the LTI model

2-15

2 Operations on LTI Models

2-16

sys = sysi1 + sys2

represents the parallel interconnection shown below.

i ¥ |

i —- Sys 1 i

| l + 1
| :T + 1 .
l . sys2 l
I Yo I

i

SYS

If sys1 and sys2 are two state-space models with data A,, B, C,, D, and
A,, B,, C,, D,, the state-space data associated with sys1 + sys2is

A 0] [B
C, C Dy +Ds.
[0 Az} [Bz} (G Cel Di+Dy

Scalar addition is also supported and behaves as follows: if sys1 is MIMO and
sys2 1s SISO, sys1 + sys2 produces a system with the same dimensions as
sys1 whose ijth entry is sys1(i,j) + sys2.
Similarly, the subtraction of two LTI models

Ssys = sys1 - sys2

is depicted by the following block diagram.

Arithmetic Operations on LTI Models

-

M

1
i
1

o — 1
1
i "
i

sys2

i
yg |
ol

Multiplication

SYS

|
I
)

Multiplication of two LTI models connects them in series. Specifically,

sys = sysl * sys2

returns an LTI model sys for the series interconnection shown below.

0 — - Sys2

v
 E— g s5ys]

Notice the reverse orders of sys1 and sys2 in the multiplication and block
diagram. This is consistent with the way transfer matrices are combined in a
series connection: if sys1 and sys2 have transfer matrices H, and H,, then

y=Hv=H Hu)=(H,x H)u.

For state-space models sys1 and sys2 with data A, B, C,, D, and
A,, B,, C,, D,, the state-space data associated with sys1*sys2 is

A1 BiGCy B, Dy
b B2

0 A

]’ [C; DiCy], DyDs.

2-17

2 Operations on LTI Models

Finally, if sys1 is MIMO and sys2 is SISO, then sys1*sys2 or sys2*sys1 is
interpreted as an entry-by-entry scalar multiplication and produces a system
with the same dimensions as sys1, whose ijth entry 1s sys1(i,j)*sys2.

Inversion and Related Operations

Inversion of LTI models amounts to inverting the following input/output
relationship.

y=Hu — u=Hly.

This operation is defined only for square systems (that is, systems with as
many inputs as outputs) and is performed using

inv(sys)

The resulting inverse model is of the same type as sys. Related operations
include:

e Left division sys1\sys2, which is equivalent to inv(sys1) *sys2

® Right division sys1/sys2, which is equivalent to sys1*inv(sys2)

For a state-space model sys with data A, B, C, D, inv(sys) is defined only
when D is a square invertible matrix, in which case its state-space data is

A-BDC, BD, -D-1C, D

Transposition
You can transpose an LTI model sys using
sys.'

This is a literal operation with the following effect:

¢ For TF models (with input arguments, num and den), the cell arrays num
and den are transposed.

¢ For ZPK models (with input arguments, z, p, and k), the cell arrays, z and
p, and the matrix k are transposed.

2-18

Arithmetic Operations on LTI Models

® For SS models (with model data A, B, C, D), transposition produces the
state-space model AT, CT, BT, DT,

¢ For FRD models (with complex frequency response matrix Response), the
matrix of frequency response data at each frequency is transposed.

Pertransposition

For a continuous-time system with transfer function H(s), the pertransposed
system has the transfer function

G(s) = [H(-9)]".
The discrete-time counterpart is
G(x) = [HE]
Pertransposition of an LTI model sys is performed using

sys

You can use pertransposition to obtain the Hermitian (conjugate) transpose
of the frequency response of a given system. The frequency response of
the pertranspose of H(s), G(s) = [H(-s)]7, is the Hermitian transpose of the
frequency response of H(s): GGw) = H(jw)".

To obtain the Hermitian transpose of the frequency response of a system sys
over a frequency range specified by the vector w, type

freqgresp(sys', w);

2-19

2 Operations on LTI Models

Model Interconnection Functions

In this section...

“Supported Interconnection Functions” on page 2-20
“Concatenation of LTT Models” on page 2-21

“Feedback and Other Interconnection Functions” on page 2-22

Supported Interconnection Functions

You can use the Control System Toolbox model interconnection functions

to help you build models. With these functions, you can perform I/0
concatenation ([,], [; 1, and append), general parallel and series connections
(parallel and series), and feedback connections (feedback and 1ft). These
functions are useful to model open- and closed-loop systems.

Interconnection
Operator

Description

[,]

Concatenates horizontally

[5]

Concatenates vertically

append

Appends models in a block diagonal configuration

augstate

Augments the output by appending states

connect

Forms an SS model from a block diagonal LTI object
for an arbitrary interconnection matrix

feedback

Forms the feedback interconnection of two models

1ft

Produces the LFT interconnection (Redheffer Star
product) of two models

parallel

Forms the generalized parallel connection of two
models

series

Forms the generalized series connection of two models

2-20

Model Interconnection Functions

Concatenation of LTI Models

LTI model concatenation is done in a manner similar to the way you
concatenate matrices in the MATLAB technical computing environment, using

sys = [sys1 , sys2] % horizontal concatenation
sys = [sys1 ; sys2] % vertical concatenation
Sys append(sys1,sys2) % block diagonal appending

In I/O terms, horizontal and vertical concatenation have the following
block-diagram interpretations (with H, and H, denoting the transfer matrices
of sys1 and sys2).

) —pm Hy j
+

H, —»

' i
N ¥
g —= H, | H; |—m= ¥
” M H,
y = [Hl , Hz] 1 - "
o yo| |Hg
Horizontal Concatenation Vertical Concatenation

You can use concatenation as an easy way to create MIMO transfer functions
or zero-pole-gain models. For example,

H=1[tf(1,[1 0]) 1 5 O tf([1 -1],[1 1])]

specifies

2-21

2 Operations on LTI Models

2-22

[

Use
append(sys1,sys2)

to specify the block-decoupled LTI model interconnection.

iy — sysT]
sysl O
0 sys2
iy — 1 gem| SYys2 -y,
Appended Models Transfer Function

See append for more information on this function.

Feedback and Other Interconnection Functions

The following LTI model interconnection functions are useful for specifying
closed- and open-loop model configurations:

e feedback puts two LTI models with compatible dimensions in a feedback
configuration.

® series connects two LTI models in series.

e parallel connects two LTI models in parallel.

¢ 1ft performs the Redheffer star product on two LTI models.

e connect works with append to apply an arbitrary interconnection scheme
to a set of LTI models.

Model Interconnection Functions

For example, if sys1 has m inputs and p outputs, while sys2 has p inputs and
m outputs, then the negative feedback configuration of these two LTI models

i -) = sysT -y

Sys2 -

1s realized with

feedback(sys1,sys2)

This specifies the LTI model with m inputs and p outputs whose I/O map is
(I +sysl- sysZ)_1 sysl.

See the reference pages online for more information on feedback, series,
parallel, 1ft, and connect.

2-23

2 Operations on LTI Models

2-24

Converting Between Continuous- and Discrete-Time
Representations

In this section...

“Supported Conversion Functions and Methods” on page 2-24
“Zero-Order Hold Conversion Method” on page 2-25
“First-Order Hold Conversion Method” on page 2-27
“Impulse-Invariant Mapping” on page 2-28

“Tustin Approximation” on page 2-32

“Zero-Pole Matching Equivalents” on page 2-35

Supported Conversion Functions and Methods

The function c2d discretizes continuous-time TF, SS, or ZPK models.
Conversely, d2c converts discrete-time TF, SS, or ZPK models to continuous
time. Both c2d and d2d support several discretization and interpolation
methods, as shown in the following table.

Discretization Method Use when:

Zero-order hold (ZOH) You want an exact discretization in
the time domain for staircase inputs.

First-order hold (FOH) You want an exact discretization in
the time domain for piecewise linear
inputs.

Impulse-invariant mapping ®* You want an exact discretization

in the time domain for impulse
train inputs.

® You do not need exact phase
matching in the frequency
domain.

Converting Between Continuous- and Discrete-Time Representations

Discretization Method Use when:

Tustin approximation ® You want good matching in the
frequency domain between the
continuous- and discrete-time
models.

® Your model has important
dynamics near the Nyquist
frequency.

Zero-pole matching equivalents You have a SISO model, and you
want good matching in the frequency
domain between the continuous- and
discrete-time models.

The default syntax performs a ZOH conversion:

sysd = c2d(sysc, Ts); % Ts = sampling period in seconds
sysc = d2c(sysd);

You can specify another method as string input to d2c¢ or c2d:

sysd = c2d(sysc, Ts, 'foh'); % use first-order hold
sysc d2c(sysd, 'tustin'); % use Tustin approximation

This syntax uses the default options for the specified discretization method.
(See the c2d and d2c reference pages for more detail.) You can specify
different options for discretizing systems with the 'tustin' or 'matched’
methods using c2dOptions or d2cOptions to define the options. For example,
to discretize a system using the Tustin method with a prewarp transformation
at 4.2 rad/s and a sample time of 0.1 s:

opt = c2dOptions('Method', 'tustin', 'PrewarpFrequency', 4.2);
sysd = c2d(sysc, 0.1, opt);

See c2d and c2dOptions for more information.

Zero-Order Hold Conversion Method

The following block diagram illustrates the zero-order-hold discretization
H (2) of a continuous-time linear model H(s)

2-25

2 Operations on LTI Models

2-26

k] y[k]

deﬂ]

The ZOH block generates the continuous-time input signal u(¢) by holding
each sample value u(k) constant over one sample period:

u(t)=ulk], kT, <t<(k+1)T,

The signal u(?) is the input to the continuous system H(s). The output y[k]
results from sampling y(¢) every T seconds.

Conversely, given a discrete system H (z), d2¢c produces a continuous system
H(s). The ZOH discretization of H(s) coincides with H (z).

The ZOH discrete-to-continuous conversion has the following limitations:

e d2c¢ cannot convert LTI models with poles at z = 0.

® For discrete-time LTI models having negative real poles, ZOH d2c
conversion produces a continuous system with higher order. The model
order increases because negative real poles in the z domain map to pairs
of complex poles in the s domain.

The next example illustrates the behavior of d2¢ with real negative poles.
Consider the following discrete-time zpk model, with one real negative pole
at z =-0.5.

hd = zpk([],-0.5,1,0.1)
Zero/pole/gain:

Sampling time: 0.1

Converting Between Continuous- and Discrete-Time Representations

Use d2c¢ to convert this model to continuous-time with the default ZOH
method:

hc = d2c(hd)
The result is a second-order model:

Zero/pole/gain:
4.621 (s+149.3)

(s"2 + 13.86s + 1035)

Discretizing the model again returns the original discrete-time system, up to
canceling the pole/zero pair at z = —0.5:

c2d(hc,0.1)

Zero/pole/gain:
(z+0.5)

Sampling time: 0.1

ZOH Method for Systems with Time Delays

You can use the ZOH method to discretize SISO or MIMO continuous-time
models with time delays. The ZOH method yields an exact discretization for
systems with I/O delays only (no internal delays).

For more details about how the ZOH method handles systems with time
delays, see “ZOH, FOH, and Impulse-Invariant Methods” in the c2d reference

page .

First-Order Hold Conversion Method

First-order hold (FOH) differs from ZOH by the underlying hold mechanism.
To turn the input samples u[k] into a continuous input u(t), FOH uses linear
interpolation between samples:

2-27

2 Operations on LTI Models

2-28

t— kT,

S

u(t)=ulk]+

(u[k+1]-ulk]), RT,<t<(k+1)T,

This method is generally more accurate than ZOH for systems driven by
smooth inputs. Because of causality constraints, you can use this option only
for c2d conversions and not d2¢ conversions.

Note This FOH method differs from standard causal FOH and is more
appropriately called triangle approximation (see [2], p. 228). It is also known
as ramp-invariant approximation because it is distortion-free for ramp inputs.

FOH Method for Systems with Time Delays

You can use the FOH method to discretize SISO or MIMO continuous-time
models with time delays. The FOH method handles time delays in the same
way as the ZOH method. See “ZOH Method for Systems with Time Delays” on
page 2-27 and the c2d reference page for more details.

For more details about how the ZOH method handles systems with time
delays, see “ZOH, FOH, and Impulse-Invariant Methods” in the c2d reference

page .

Impulse-Invariant Mapping

The impulse-invariant mapping matches the discretized impulse response to
that of the continuous time system. For example:

n=1;d=1[11]; % Simple 1st order continuous system

sc = ss(tf(n, d)); % state space representation

% Convert to discrete system via impulse invariant mapping
sd1 = c2d(sc, 0.01, 'impulse');

impulse(sc,sd1) % Plot both impulse responses

Converting Between Continuous- and Discrete-Time Representations

Drowes -ioix

File Edit Wiew Insert Tools Desktop Window Help

DeE& hRAQAO®|E 0B DO Ly

Impulze Response
1 T T T T T

BC
=il

Amplitude:

i} | | !

Time (zec)

The impulse response plot shows that the impulse responses match.
Impulse-invariant mapping is therefore ideal when you want the discretized
system to match the time-domain impulse response of the continuous-time
system.

The frequency responses do not match, however. For example:

bode(sc, sd1)

2-29

2 Operations on LTI Models

) Figure 1 [_ O] x|
File Edit View Insert Tools Desktop Window Help N

EEEID R AR EE=

Becke Diagram
T

Magnitucha (ciB)

45k

Phase (clag)

Frequency (racisec)

Impulse-invariant mapping introduces a shift in the DC gain of the discretized
system. In addition, it introduces a phase mismatch at higher frequencies.
The phase mismatch results from alias effects, and this effect becomes more
pronounced as the sampling time increases. For example:

sd2 = c2d(sc, 0.2, 'impulse');

sd3 = c2d(sc, 0.5, 'impulse');
bode(sc, sd1, sd2, sd3)

2-30

Converting Between Continuous- and Discrete-Time Representations

) Figure 1 [_ O] x|
File Edit View Insert Tools Desktop Window Help N

NS (K RXODEL-20E DO

Becke Diagram

50 T T T

40 .
o
B ol — 4
4 \
=
G o]
g
=

20 [g

=40 1 1 1

Phase (clag)

- | 1 1111l 1 1 L1l 1 I N | R — —
107 1 10° 10 1ol
Frequency (racisec)

While the shift in the DC gain of this system decreases with decreasing
sampling time, the aliasing effects become more pronounced. Because of
aliasing, impulse-invariant mapping is not a good choice if you want to match
the frequency response of the continuous system. In most cases, choose

a bilinear transform (such as “Tustin Approximation” on page 2-32) for
preserving the frequency-domain response of the transformed model.

In general, impulse-invariant discretization does not preserve the DC gain.
For example, consider the continuous-time transfer function:

1
s+a

G (s)=

The DC gain G, (0) = 1/a. The impulse-invariant discretization of G (s) is:

2-31

2 Operations on LTI Models

where T, is the sampling time. The DC gain of the discretized system is:

For further discussion of impulse invariance scaling issues and aliasing,
see [3].

Impulse-Invariant Mapping for Systems with Time Delays

You can use impulse-invariant mapping to discretize SISO or MIMO
continuous-time models with time delay, except that the method does
not support ss models with internal delays. For supported models,
impulse-invariant mapping yields an exact discretization. See the c2d
reference page for more information.

Tustin Approximation
The Tustin or bilinear approximation uses the approximation

Z_eSTs _ 1+.S‘Ts/2
1-sT,/2

to relate s-domain and z-domain transfer functions. In c2d conversions, the
discretization H,(2) of a continuous transfer function H(s) is:

z—-1
z+1

Hy(2)=H(s), §=—=
TS

Similarly, the d2c conversion relies on the inverse correspondence

1+sT./2
H(s)=H,(2), =5 =
@=Ha(),

Use the Tustin discretization method if you need good frequency domain
matching between your continuous-time system and the corresponding
discretized system. (See “Impulse-Invariant Mapping” on page 2-28.)

2-32

Converting Between Continuous- and Discrete-Time Representations

For example, the following demonstration shows that in contrast to
"impulse', the 'tustin' method is free of aliasing effects that depend upon
sampling time:

n=1; d=1[11]; % Simple 1st order continuous system

sc = ss(tf(n, d)); % state space representation

% Convert to discrete system with three different sampling times
sd4 = c2d(sc, 0.1, 'tustin');

sd5 c2d(sc, 0.2, 'tustin');

sd6 = c2d(sc, 0.5, 'tustin');

bode(sc, sd4, sd5, sd6)

=10 x|

File Edit Wiew Insert Tools Desktop Window Help

D& KRaMe | € 08|80
K

Bode Diagram

B B e i

-100 -

200 | E

Magnitude (dB)

=300 - B

400 MR | PR | PRI | PR |
a0

0 \\ - i No aliasing effects
-a0 1

EE= E

Phase (deq)

270 e Ll Ll s b Ll PR BT
107 10 10° 10’ 10° 10
Freguency (radfzec)

Tustin Approximation with Frequency Prewarping

The Tustin approximation with frequency prewarping uses this
transformation of variables:

0] z-1

H -H ’ ’_
a(2)=H(s), T tan(ol,/2) 2 +1

2-33

2 Operations on LTI Models

2-34

This change of variable ensures the matching of the continuous- and
discrete-time frequency responses at the prewarp frequency o, because of
the following correspondence:

H(jo)=Hy (eijS)

To use the Tustin approximation with frequency prewarping, use c2dOptions
to specify the prewarp frequency. For example:

n=1; d=1[11]; % Simple 1st order continuous system
sc = ss(tf(n, d)); % state space representation

% create a c2dOptions object specifying the Tustin method

% with prewarp frequency 4.2 rad/s

opt = c2dOptions('Method', 'tustin', 'PrewarpFrequency', 4.2);
sd = c2d(sc, 0.01, opt);

Specifying a PrewarpFrequency of 0 is equivalent to using the Tustin method
with no prewarp. See the c2d and c2dOptions reference pages for more
information about specifying discretization options.

Tustin Approximation for Systems with Time Delays

You can use the Tustin approximation to discretize SISO or MIMO
continuous-time models with time delays. The Tustin approximation yields
an approximate discretization for a system with time delay tau. The integer
portion of the delay, k*Ts, maps to a delay of k sampling periods in the
discretized model. This approach ignores the residual fractional delay, tau

- k*Ts, by default. You can instead approximate the fractional delay by a
Thiran filter using the c2dOptions command.

For example, consider the following transfer function:

10

His) = 0255 .
(s) s2 +3s5+10

To discretize this system using a Thiran filter to approximate a residual
fractional delay, enter:

Converting Between Continuous- and Discrete-Time Representations

h = tf(10,[1 3 10], 'iodelay',0.25); % create transfer function

% define the discretization options

opts = c2dOptions('Method', 'tustin', 'FractDelayApproxOrder', 3);
hdtust = c2d(h, 0.1, opts);

These commands discretize h with a sample time of 0.1 s, approximating the
residual fractional time delay as a Thiran filter of order up to 3.

For state-space systems, c2d models the Thiran filter as additional states in
the discretized model.

For more details about using the Tustin approximation to discretize systems
with time delays, see “Tustin Approximation and Zero-Pole Matching
Methods” on the c2d reference page. For a discussion of Thiran filters, see
the thiran reference page and [3].

Zero-Pole Matching Equivalents

The method of conversion by computing zero-pole matching equivalents
applies only to SISO systems. The continuous and discretized systems have
matching DC gains. Their poles and zeros are related by the transformation:

where:

® z is the ith pole or zero of the discrete-time system.

® s, is the ith pole or zero of the continuous-time system.

e T is the sampling time.

See [2] for more details.

Use the zero-pole matching method by specifying the matched method with

c2d, c2dOptions, d2c, or d2cOptions. See the reference pages for those
commands for more information.

2-35

2 Operations on LTI Models

2-36

Zero-Pole Matching for Systems with Time Delays

You can use zero-pole matching to discretize SISO continuous-time models
with time delay, except that the method does not support ss models with
internal delays. The zero-pole matching method handles time delays in the
same way as the Tustin approximation. See “Tustin Approximation and
Zero-Pole Matching Methods” on the c2d reference page.

Resampling of Discrete-Time Models

Resampling of Discrete-Time Models

In this section...

“Available Commands for Resampling Discrete-Time Models” on page 2-37

“Example of Resampling a Discrete-Time Model” on page 2-37

Available Commands for Resampling Discrete-Time

Models

You can resample a discrete-time TF, SS, or ZPK model using the commands

described in the following table.

To... Use the command...
¢ Downsample a system. d2d
e Upsample a system without any
restriction on the new sampling
time.
Upsample a system with the highest | upsample

accuracy when:

® The new sample time is
integer-value-times faster than
the sample time of the original
model.

® Your new model can have more
states than the original model.

Example of Resampling a Discrete-Time Model

This example shows how to upsample a system using both the d2d and
upsample commands and compares the results of both to the original system.

1 Create the original system, h1, by typing:

h1 = tf([1 0.4],[1 -0.7]1,0.3)

This command returns the following result:

2-37

2 Operations on LTI Models

Transfer function:
z + 0.4

Sampling time: 0.3

The sample time is 0.3 seconds.

2 Create a new system with a sampling time of 0.1 seconds using the d2d

command. Type:

h2 = d2d(h1,0.1)

This command returns the following result:

Transfer function:
z - 0.4769

z - 0.8879
Sampling time: 0.1

The sample time is 0.1 seconds.

3 Create another new system with a sampling time of 0.1 seconds using the

2-38

upsample command by typing:

h3 = upsample(h1,3)

This command returns the following result:

Transfer function:
z"3 + 0.4

Sampling time: 0.1

The sample time is 0.1 seconds and h3 has three times as many poles and
zeros as hi.

Resampling of Discrete-Time Models

4 Compare the results of the new upsampled systems h2 and h3 to the
original system h1. Use step response and bode plots by typing:

step(h1,'-r',h2,"':9',h3,"'--b")
figure
bode(h1,'-r',h2,"':9"',h3,"'--b")

T e ——— ~=loi x|

File Edit Wiew Insert Tools Desktop Window Help

N ES (K ARXOTDEL-20E DO

Step Response
T T

Amplitude:

1 : | | | | | |

1] 1 2 & 4 5] G T
Time (zec)

The step response plot shows that the upsampled system h3, created using
the upsample command, provides a better match than h2 to the original
system h1. The h3 system matches h1 at multiples of the original sampling
time.

2-39

2 Operations on LTI Models

g -ioix

File Edit Wiew Insert Tools Desktop Window Help

NS (K[AXOTDEL-20E e O

Bode Diagram

Magnitude (dB)

Phase (deg)

o0k s MR | s MR R | L P L
10" 10 10 10
Freguency (Hz)

The bode plot shows that the upsampled system h3, created using the
upsample command, provides an exact match of the original system h1
up to the Nyquist frequency mr / Ts,, where T, is the sampling time of
the original system.

2-40

References

References

[1] Astrém, K.J. and B. Wittenmark, Computer-Conirolled Systems: Theory
and Design, Prentice-Hall, 1990, pp. 48-52.

[2] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of
Dynamic Systems (3rd Edition), Prentice Hall, 1997.

[3] Smith, J.0. III, “Impulse Invariant Method”,
Physical Audio Signal Processing, August 2007.
http://www.dsprelated.com/dspbooks/pasp/Impulse_Invariant_Method.html.

[4] T. Laakso, V. Valimaki, “Splitting the Unit Delay”, IEEE Signal
Processing Magazine, Vol. 13, No. 1, p.30-60, 1996.

2-41

http://www.dsprelated.com/dspbooks/pasp/Impulse_Invariant_Method.html

2 Operations on LTI Models

2-42

Model Analysis Tools

® “General Model Characteristics” on page 3-2
e “Model Dynamics” on page 3-4

® “State-Space Realizations” on page 3-7

3 Model Analysis Tools

General Model Characteristics

General model characteristics include the model type, I/O dimensions, and
continuous or discrete nature. Related commands are listed in the table
below. These commands operate on continuous- or discrete-time LTI models
or arrays of LTI models of any type.

General Model
Characteristics
Commands

Description

class

Display model type (' tf', 'zpk', 'ss',or 'frd").

hasdelay

Test true if LTI model has any type of delay.

isa

Test true if LTI model is of specified class.

isct

Test true for continuous-time models.

isdt

Test true for discrete-time models.

isempty

Test true for empty LTI models.

isproper

Test true for proper LTI models.

issiso

Test true for SISO models.

ndims

Display the number of model/array dimensions.

reshape

Change the shape of an LTI array.

size

Output/input/array dimensions. Used with
special syntax, size also returns the number of
state dimensions for state-space models, and the
number of frequencies in an FRD model.

This example illustrates the use of some of these commands. See the related
reference pages for more details.

H= tf({1 [1

-11},{[1 0.1] [1 2 10]})

Transfer function from input 1 to output:

General Model Characteristics

s + 0.1

Transfer function from input 2 to output:
s -1

&2+ 25 + 10

class(H)

ans =
tf

size(H)
Transfer function with 2 input(s) and 1 output(s).

[ny,nu] = size(H) % Note: ny = number of outputs

ny =
1
nu =
2
isct(H) % Is this system continuous?
ans =

isdt(H) % Is this system discrete?

ans =

3-3

3 Model Analysis Tools

Model Dynamics

You can use functions to determine the system poles, zeros, DC gain, norms,
etc. You can apply these functions to single LTI models or LTI arrays. The
following table gives an overview of these commands.

Model Dynamics

covar Covariance of response to white noise.

damp Natural frequency and damping of system poles.
dcgain Low-frequency (DC) gain.

dsort Sort discrete-time poles by magnitude.

esort Sort continuous-time poles by real part.

norm Norms of LTI systems (H, and L).

pole, eig System poles.

pzmap Pole/zero map.

zero System transmission zeros.

With the exception of the L_ norm, these commands are not supported for
FRD models.

Here is an example of model analysis using some of these commands.
h = tf([4 8.4 30.8 60],[1 4.12 17.4 30.8 60])

Transfer function:
4 s*3 + 8.4 s"2 + 30.8 s + 60

s"4 + 4.12 s"3 + 17.4 s*2 + 30.8 s + 60
pole(h)
ans =

-1.7971 + 2.21371
-1.7971 - 2.21371

3-4

Model Dynamics

-0.2629 + 2.70391
-0.2629 - 2.70391
zero(h)
ans =
-0.0500 + 2.73821
-0.0500 - 2.73821
-2.0000
dcgain(h)
ans =
1
[ninf,fpeak] = norm(h,inf) % peak gain of freq. response
ninf =
1.3402 % peak gain
fpeak =

1.8537 % frequency where gain peaks

These functions also operate on LTI arrays and return arrays. For example,
the poles of a three dimensional LTI array sysarray are obtained as follows.

sysarray = tf(rss(2,1,1,3))
Model sysarray(:,:,1,1)

Transfer function:
-0.6201 s - 1.905

s"2 + 5.672 s + 7.405

Model sysarray(:,:,2,1)

Transfer function:
0.4282 s*2 + 0.3706 s + 0.04264

s"2 + 1.056 s + 0.1719

Model sysarray(:,:,3,1)

Transfer function:

3-5

Model Analysis Tools

3-6

0.621 s + 0.7567

s"2 + 2.942 s + 2.113

3x1 array of continuous-time transfer functions.
pole(sysarray)
ans(:,:,1) =
-3.6337
-2.0379
ans(:,:,2) =
-0.8549
-0.2011
ans(:,:,3) =
-1.6968
-1.2452

State-Space Redlizations

State-Space Realizations

You can use the following functions to analyze, perform state coordinate
transformations on, and derive canonical state-space realizations for single
state-space LTI models or LTI arrays of state-space models.

State-Space Realizations

canon Canonical state-space realizations.

ctrb Controllability matrix.

ctrbf Controllability staircase form.

gram Controllability and observability gramians.
obsv Observability matrix.

obsvf Observability staircase form.

§S2sS State coordinate transformation.

3-7

3 Model Analysis Tools

3-8

Arrays of LTI Models

e “Concept of an LTI Array” on page 4-2

¢ “Dimensions, Size, and Shape of an LTI Array” on page 4-8
e “Building LTI Arrays” on page 4-13

¢ “Indexing into LTI Arrays” on page 4-22

® “Operations on LTI Arrays” on page 4-27

4 Arrays of LTI Models

Concept of an LTI Array

In this section...

“What is an LTI Array?” on page 4-2

“When to Use an LTI Array” on page 4-2

“When to Collect a Set of Models in an LTI Array” on page 4-3
“Restrictions for LTI Models Collected in an Array” on page 4-3
“Where to Find Information on LTI Arrays” on page 4-4
“Visualizing LTI Arrays” on page 4-4

“Higher Dimensional Arrays of LTI Models” on page 4-6

What is an LTI Array?

LTT arrays are arrays that store an LTI models as one element in the array.
Since an array in MATLAB technical computing software can be treated as
a single variable, so can an LTI array. This means that you can operate on,
say, 100 LTI models by one operations on a single variable—making LTI
arrays a powerful tool if you have large numbers of LTI models to consider
in your analysis and design process.

Because LTI arrays are multidimensional in nature, there is a large set of
topics that relate to them. This section discusses these topics:

When to Use an LTI Array

In many applications, it is useful to consider collections of linear, time
invariant (LLTT) models. For example, you may want to consider a model with
a single parameter that varies, such as

sysi
sys2
sys3

tf(1, [111]1);
tf(1, [1 1 2]);
tf(1, [1 1 31);

and so on. A convenient way to store and analyze a collection like this is to
use LTT arrays. Continuing this example, you can create this LTI array and
store all three transfer functions in one variable.

Concept of an Tl Array

sys_1ltia = stack(1, sys1, sys2, sys3);

You can use the LTI array sys_1ltia just like you would use, for example,
sysi.

You can use LTI arrays to collect a set of LTI models into a single MATLAB
variable. You then use this variable to manipulate or analyze the entire
collection of models in a vectorized fashion. You access the individual models
in the collection through indexing rather than by individual model names.

LTI arrays extend the concept of single LTI models in a similar way to how
multidimensional arrays extend two-dimensional matrices in the MATLAB

technical computing environment (see Multidimensional Arrays in the
MATLAB documentation).

When to Collect a Set of Models in an LTI Array
You can use LTI arrays to represent

e A set of LTI models arising from the linearization of a nonlinear system
at several operating points

A collection of transfer functions that depend on one or more parameters

A set of LTI models arising from several system identification experiments
applied to one plant

A set of gain-scheduled LTI controllers

A list of LTI models you want to collect together under the same name

Restrictions for LTI Models Collected in an Array

For each model in an LTI array, the following properties must be the same:

¢ The number of inputs and outputs
¢ The sample time, for discrete-time models

¢ The I/O names and I/O groups

Note You cannot specify Simulink LTI blocks with LTI arrays.

4 Arrays of LTI Models

Where to Find Information on LTI Arrays

The next two sections give examples that illustrate how to visualize an LTI
array, its dimensions, and size. To read about how to build an LTI array, go to
“Building LTI Arrays” on page 4-13. The remainder of the chapter is devoted
to indexing and operations on LTI arrays. You can also apply the Control
System Toolbox analysis functions to LTI arrays. See Chapter 3, “Model
Analysis Tools” for more information on these functions. You can also view
response plots of LTI arrays with the LTI Viewer.

Visualizing LTI Arrays

To visualize the concept of an LTI array, consider the set of five transfer
function models shown below. In this example, each model has two inputs
and two outputs. They differ by parameter variations in the individual model
components.

1.1 1.3 1.11 1.15 1.09
s+1 sv1i1 © svis Y s+13 ° s+14 Y
1
0 1 1 1 1
5+5 0 s+56.2 0 5+54 0 5+5.6 0 5+5.8
N .

~

Five LTI Models to be Collected in an LTI Array

Concept of an Tl Array

This LTI arroy embodies o
¥ 1-by-5 [t of models.
M
W
W A
r o s s | 4 E&
,,,,,, S h :5.8
| k :5.5 1
L) 11 r
Fy L
1.1 y A4 5.4 :
s+1 T -: d
/]
o 1| 22 helement of th
545 Eachelement of the LTI orroy
E is 0 model.

An LTI Array Containing These Five Models

Just as you might collect a set of two-by-two matrices in a multidimensional
array, you can collect this set of five transfer function models as a list in an
LTI array under one variable name, say, sys. Each element of the LTI array
is an LTI model.

Individual models in the LTI array sys are accessed via indexing. The general
form for the syntax you use to access data in an LTI array is

sysa(Outputs, Inputs Models)

The first index The second index The remuining indices select parficulor

selects the output selects the input models inthe LT arroy by their arroy

thannels. thannels. toord ina fes.

For example, you can access the third model in sys with sys(:,:,3). The

following illustrates how you can use indexing to select models or their
components from sys.

4 Arrays of LTI Models

4-6

sysa(2,2,3) selecks
the (2,2} entry of the
s]-_;lllE 0 third model in the orroy.
T II_ 11111 - .-1-“
: L
—
f 6
1.1 -
0 b.4
s+1 =
1 20
0
545 d

sysal(:,:,3) selects the third model inthe orroy.

Using Indices to Select Models and Their Components

See “Concept of an LTI Array” on page 4-2 for more information on indexing.

Higher Dimensional Arrays of LTI Models

You can also collect a set of models in a two-dimensional array. The following
diagram illustrates a 2-by-3 array of six, two-output, one-input models called
m2d.

Concept of an Tl Array

Euch entryin this 2-by-3 orroy of
mod els is o two-output, one-input

transfer function.
7
!
f
* I
/mzd[:,:,l,n/mm:,:,m/mi[,,w

m2d(:,:,2,1) m2d(;,:,22) m2d[::,2,3) m2d(:,:,1,3) extrocts the modelin

the [1,3) posifion of the orroy.
3.4 345
s+ 286 s+2.81
727 7.a2

m2d: A 2-by-3 Array of Two-Output, One-Input Models

3.36
s+29

T.28

More generally, you can organize models into a 3-D or higher-dimensional
array, in much the same way you arrange numerical data into
multidimensional arrays (see Multidimensional Arrays in the MATLAB
documentation).

4-7

4 Arrays of LTI Models

Dimensions, Size, and Shape of an LTI Array

In this section...

“I/O and Array Dimensions of LTI Arrays” on page 4-8

“Accessing the Dimensions of an LTI Array Using size and ndims” on page
4-10

“Using reshape to Rearrange an LLTT Array” on page 4-12

1/0 and Array Dimensions of LTl Arrays

The dimensions and size of a single LTI model are determined by the ou